If At First You Don’t Succeed, Try, Try, Again...?

Insights and LLM-informed Tooling for Detecting
Retry Bugs in Software Systems

Bogdan“Bo” Stoica®, Utsav Sethi*, Yiming Su, Cyrus Zhou,
Shan Lu, Jonathan Mace, Madan Musuvathi, Suman Nath

== Microsoft
Research

* equal contribution



Retry, task re-execution on errors

® CHICAGO



Retry, task re-execution on errors

® CHICAGO



Retry, task re-execution on errors

—x @ S

-

® CHICAGO



Retry, task re-execution on errors

—x @ S

'

-

® CHICAGO



Retry, task re-execution on errors

®—x|® S ..
— %

|V
Y

® CHICAGO



Retry, task re-execution on errors

®—x|® S ..

'

® CHICAGO



Retry is crucial in modern systems ...

@ Improves systems resilience

® CHICAGO



Retry is crucial in modern systems ...

@ Improves systems resilience

<é:‘ Last line of defense against soft(hard)ware errors

® CHICAGO



Retry is challenging to implement ...

# CHICAGO



Retry is challenging to implement ...

@ No standard code structure

® CHICAGO



Retry is challenging to implement ...

@ No standard code structure

@ Non-trivial to determine which errors to retry or not

® CHICAGO



Retry is challenging to implement ...

@ No standard code structure

@ Non-trivial to determine which errors to retry or not

@3 Need to handle side-effects of failed tasks

® CHICAGO



Retry is difficult to test ...

@ High testing coverage is difficult to achieve

® CHICAGO



Retry is difficult to test ...

@ High testing coverage is difficult to achieve

@ Hard-to-replicate transient triggers

® CHICAGO



Fault retry impacts end users ...

& CHICAGO



Fault retry impacts end users ...

ING state

H | HBASE-20492

UnassignProce n retry loop on region stuck in OPEN

BASE dure is stuck i

# CHICAGO



Fault retry impacts end users ...

I | -m | HBASE-20492 . in OPENING state
Unas:i;nProcedure is stuck in retry loop on region stuck
BASE ;

n, (Spark]/ SPARK-28163

—
¥ Kafka ignores user configuration on FETCH_OFFSET_NUM_RETRY
\‘ .

Ption" ¢ '
99ered i, ‘createBIockRead
er’ durin

® CHICAGO



Fault retry impacts end users ...

on region stuck in OPENING state

H | HBASE-20492

UnassignProcedure is stuck in retry loop

BASE

»r (Sparki/ SPARK-28163

SPaiK \ afka i
a ignores user configurati
\ ﬂe g on on FETCH OFFSET NUM_RETRY

Plion’ trngE'rnA s

| @ fadoop HDFSJ/ HDFS-15439
Setting dfs.mover.retry.max.attempts to negative value will retry forever.
f
v lE'l'ry 'tEration

# CHICAGO



Fault retry impacts end users ...

I | fHBasel /| HBASE-” S0G7% ,,
i _-2 Unassignkiv- Kafka“?’%ﬁk -+vy loop on region stuck in OPENING state

u
COnfi
9uray;
on on g
», (Spark]/ SPARK-28163 TCH OFFS
= ET N
-NU

spark Kafka i
a ignores user configurati
\ i"‘""ﬂﬁe g on on FETCH_OFFSET_NUM_RETmM~RETRy

Pl'lon‘ trngErnA Do

| @ fadoop HDFSJ/ HDFS-15439
Setting dfs.mover.retry.max.attempts to negative value will retry forever.
f
v lE'l'ry 'tEration

# CHICAGO



Fault retry impacts end users ...

I | [HBasd /| HBASE Soak<

i _-2 Unassignkiv- Kafky ~try Ioop on region stuck in OPENING state

SP4
RK 78 7{;, 3

ign
Nop,
€S use,

= - NO . °
[ @ w, an opportune time to investigate retry bugs }

JFCITS
Kafka iﬂnores user confi '
Igurati

\‘ g, on on FETcH_OFFSET_NUM_RETK‘I.”‘RETRY

Ption trlggernA T

| @ fadoop HDFSJ/ HDFS-15439
Setting dfs.mover.retry.max.attempts to negative value will retry forever.
v IEIry 'tEration

# CHICAGO



Key contributions

—@- A systematic study of real-world retry bugs

# CHICAGO



Key contributions

—@- A systematic study of real-world retry bugs

—/@\- A new framework for detecting retry bugs

® CHICAGO



Key contributions

—@- A systematic study of real-world retry bugs
—@- A new framework for detecting retry bugs

-/@\- Static analysis enhanced by large language models

® CHICAGO



Key contributions

—@- A systematic study of real-world retry bugs
—@- A new framework for detecting retry bugs

-@- Static analysis enhanced by large language models

_/@\- Re-purposed retry-focused unit testing

® CHICAGO



Understanding the challenges of retry

70 bug reports 8 open-source systems

é? Reported in last 5 years RHPBRHCSHEEA
\ &
o HIvE
--

@ Confirmed & fix

§3 katka elasticsearch

AAAAAA 7 o (=D
’

® CHICAGO



Key findings from bug reports

@ Retry implemented in different, complex ways

® CHICAGO



Key findings from bug reports

@ Retry implemented in different, complex ways

Loops
Finite state machines

Queue re-append

® CHICAGO



Key findings from bug reports

@3 Retry implemented in different, complex ways

Loops QUEUE
21%

Finite state machines

m\ﬁ- A
= W

Queue re-append

Nw




Key findings from bug reports

@ Existing tests not suited to uncover retry bugs

® CHICAGO



Key findings from bug reports

@ Existing tests not suited to uncover retry bugs

0.1 - 0.5% tests labeled for testing retry

Largely check if exception is caught, not buggy behavior

® CHICAGO



Key findings from bug reports

@ Retry bugs at both policy and mechanism levels

IF should retry on error (policy)

WHEN to retry, # times, frequency (policy)

® CHICAGO



Key findings from bug reports

@ Retry bugs at both policy and mechanism levels

IF should retry on error (policy)
WHEN to retry, # times, frequency (policy)

HOW to implement to handle side-effects (mechanism)

® CHICAGO



Key findings from bug reports

@ Retry bugs at both policy and mechanism levels

36% IF should retry on error (policy)
33% WHEN to retry, # times, frequency (policy)

31% HOW to implement to handle side-effects (mechanism)

® CHICAGO



WASABI, a toolkit for finding retry bugs

® CHICAGO



WASABI, a toolkit for finding retry bugs

Retry discovery Test repurposing Test oracles

® CHICAGO



WASABI, a toolkit for finding retry bugs

— ———— ——— r——
[ HOW (mechanism) & WHEN (policy) }
qp — —— | —

Retry discovery Test repurposing Test oracles

# CHICAGO



WASABI, a toolkit for finding retry bugs

Retry discovery Pruning & triage

# CHICAGO



WASABI, a toolkit for finding retry bugs

Static checking

=N ) ( \ -
IF (policy) & WHEN (policy) J

<77 — | —
Retry discovery Pruning & triage

# CHICAGO



WASABI, a toolkit for finding retry bugs

<o &
> —_— [(g]] o —_—>
S
<>

Retry discovery

# CHICAGO



Which code snippet performs retry?

HDFS/ScondaryNameNode.java

Retry discovery

HDFS/DFSInputStream.java

a B a ™
bool createBlockReader(): void parse():

1.while (true) { 1.while (true) {

2. try { 2. try {

3. block = refreshBlock(block); 3. block = parser.getBlock(buff);

4. dnInfo = getDNInfFor(block); 4. Tlength += block.length();

5. 1if (dnInfo == null) 5. if (length >= buff.len) {

6. break; 6. break;

7. } 7. }

8. catch (IOException e) { 8. }

9. LOG(“Failed to connect to “+ 9. catch (IOException e) {

dnInfo.addr + “Retried ” + 10. throw new
++retryCount + “ times”); ParseeException(

10. addTobDeadNodes(dnInfo.info); "Unable to parse buffer.);
11. } 11. }

12. } 12.}

./




Which code snippet performs retry?

— HDFS/DFSInputStream.java

bool createBlockReader():

1.while (true) {

~

— HDFS/ScondaryNameNode.java

Retry discovery

void parse():
1.while (true) {

\




Which code snippet performs retry?

— HDFS/DFSInputStream.java

bool createBlockReader():

1.while (true) {
2. try {

7. }
8. catch (IOException e) {

11. }
\12' }

~

Retry discovery

— HDFS/ScondaryNameNode.java

void parse():

1.while (true) {
2. try {

8. }
9. catch (IOException e) {

11. }

12.
12.}

\




Which code snippet performs retry?

Retry discovery

HDFS/DFSInputStream.java

a A\ . N
bool createBlockReader(): void parse():
1.while (true) { 1.while (true) {
2. try { 2. try {
7. 1 [ Retry | [ Not retry |
8. catch (IOException e) { 8. }
9. LOG(“Failed to connect to “+ 9. catch (IOException e) {
dn 1Retried|” +
+retryCountt + © times”);
11. } 11. }
\}2.} \}L}




Identifying retry logic

® CHICAGO

T B
<Y

<>

2
—s | & — > °
1:’;1 (retry locations)




Identifying retry logic

"’”‘1 o] .
—>| = C) —> (retrv locations
Ihb < ! >
<D

‘@‘ Fuzzy code comprehension capabilities of LLMs

® CHICAGO



Identifying retry logic

T B

<y ‘1 o] .

—>| = C) —> (retrv locations
Ihb < ’ >
<D

‘@‘ Fuzzy code comprehension capabilities of LLMs

‘,@\‘ Traditional data & control flow analysis

® CHICAGO



Identifying retry logic

GPT-4
2

> —>[g]]—> (retry locations)

® CHICAGO



Identifying retry logic |

s A
Q: Does the following code perform retry

anywhere ? Answer ( YES ) or ( NO ) .

® CHICAGO



Identifying retry logic |

s A
Q: Does the following code perform retry

anywhere ? Answer ( YES ) or ( NO ) .

** REMEMBER that retry mechanisms can be
implemented through for or while loops or code
structures like state machines and queues .**

® CHICAGO



Identifying retry logic |

s A
Q: Does the following code perform retry

anywhere ? Answer ( YES ) or ( NO )

** REMEMBER that retry mechanisms can be
implemented through for or while loops or code
structures like state machines and queues .**

GPT-4 _ _ _
— Say NO 1if the file only _defines_ or
@ _creates_ retry policies , or only passes
| —> (Cp —> <re retry parameters to other builders or c’tors.
()

— Say NO if the file does not check for
exception or errors before retry .

.

S1

® CHICAGO



Identifying retry logic

Retry discovery

- A
Q; Does the following code perform retry

anywhere ? Answer ( YES ) or ( NO ) .

** REMEMBER that retry mechanisms can be
implemented through for or while loops or code
structures like state machines and queues .**

GPT-4 _ _ _
— Say NO 1if the file only _defines_ or
@ _creates_ retry policies , or only passes
| —> (Cp —> <re retry parameters to other builders or c’tors.
()

— Say NO if the file does not check for
exception or errors before retry .

— If YES provide the name of the “retry” method
.- - - - - - - - - - - -7 - )

S1

® CHICAGO



Identifying retry logic

GPT4
Q
B — [(CIp) —
[ am )

DFSInputStream.java

® CHICAGO



Identifying retry logic

GPT-4 - ~

2 A: YES. Retry is
B — (CDJp — | implemented in

[ am )
bool createBlockReader()
DFSInputStream.java \ /

# CHICAGO



Finding retry locations & exceptions

Retry discovery

— HDFS/DFSInputStream.java
bool createBlockReader():

1.while (true) {

2. try {
block = refreshBlock(block);
dnInfo = getbDNInfFor(block);
1f (dnInfo == null)

3

4

5.

6. break;

7. } CodeQL
8. catch (IOException e) { ==

9

LOG(“Failed to connect to “+

dnInfo.addr + “Retried ” +

++retryCount + “ times”);

10. addTobDeadNodes(dnInfo.info);
11. }

\}z.} y

~

® CHICAGO



Finding retry locations & exceptions

/—

HDFS/DFSInputStream.java

bool createBlockReader():

3. block = refreshBlock(block);
4. dnInfo = getDNInfFor(block);

8. catch (IOException e) {

~

Retry discovery

BlockStruct refreshBlock(...)

throws IOException;

DnInfoStruct getbDNInfFor(...)
throws IOException;

Q CodeQL

® CHICAGO



Finding retry locations & exceptions |©

— HDFS/DFSInputStream.java
bool createBlockReader():

3. block = refreshBlock(block);
4. dnInfo = getDNInfFor(block);

8. catch (IOException e) {

12. }

~

® CHICAGO

Retry discovery

BlockStruct refreshBlock(...)
throws IOException;

DnInfoStruct getbDNInfFor(...)
throws IOException;

Q CodeQL

|

{DFSInputStream.java:3, IOException)

(DFSInputStream.java:4, IOException )




WASABI, a toolkit for finding retry bugs

# CHICAGO



x= ({DFSInputStream.java:3, IOException)
ol ({DFSInputStream.java:4, IOException )

. ey D

® CHICAGO



Selecting which tests to run

({DFSInputStream.java:3, IOException)
['/@\- Run test suite once, to collect coverage information }

 —

® CHICAGO



Selecting which tests to run

({DFSInputStream.java:3, IOException)

Run test suite once, to collect coverage information

 —

b &

Use coverage info to match tests with retry locations

wlle
 —
b &



x= ({DFSInputStream.java:3, IOException)
ol ({DFSInputStream.java:4, IOException )
o Coe e )

@: 7,000+ unit tests in HDFS




x= / {DFSInputStream.java:3, IOException)
ol ({DFSInputStream.java:4, IOException )

. ey D

@: 7,000+ unit tests in HDFS

@ ~30 unit tests cover line 3

® CHICAGO



¢z \ {DFSInputStream.java:3, IOException)
oud (DFSInputStream.java:4, IOException )

. ey D

@: 7,000+ unit tests in HDFS

@ ~30 unit tests cover line 3 and 4

® CHICAGO



M —> (DFSInputStream.java:3, IOException)
o —> <DFSInputStream.java:4, IOException )

- ey D

@: 7,000+ unit tests in HDFS
@ ~30 unit tests cover line 3 and 4

(& 2 needed to test for retry bugs

® CHICAGO



Repurposing tests to find retry bugs

(HDFSInputStream.java:3, IOException)

# CHICAGO



Injecting faults during test runs

~ HDFS/DFSInputStream.java
bool createBlockReader():

1.while (true) {
2. try {
3. block = refreshBlock(block) ; <

\

® CHICAGO

Test repurposing

Intercept using Aspect] &
inject IOException




Injecting faults during test runs

~ HDFS/DFSInputStream.java
bool createBlockReader():

1.while (true) {
2. try {

8. catch (IOException e) {

\

3. block = refreshBlock(block); —

® CHICAGO

Test repurposing

Jump to catch block




Injecting faults during test runs

Test repurposing

~ HDFS/DFSInputStream.java ~N
bool createBlockReader():

1.while (true) { <

2. try { <—§‘"“*~\\\\
block = refreshBlock(block);

3.

Renter the while loop

8. catch (IOException e) {
9. LOG(“Failed to connect to “
+ dnInfo.addr);

10. addTobeadNodes(dnInfo.info); —
11. }
12. }

- J

® CHICAGO



Injecting faults during test runs

~ HDFS/DFSInputStream.java ~N
bool createBlockReader():

1.while (true) { <

2. try { <—~"““-\\\\
block = refreshBlock(block);

3.

N

Test repurposing

How do we know a retry bug happened?

8. catch (IOException e) {
9. LOG(“Failed to connect to “
+ dnInfo.addr);
10. addTobDeadNodes(dnInfo.info); —
11. }
12. }
N Y,

® CHICAGO



WASABI, a toolkit for finding retry bugs

# CHICAGO



WASABI, a toolkit for finding retry bugs

<E1§" Crashes with different exception (HOW)
@ Large # of retry attempts or prolonged retry (WHEN)

@ Not “pausing” between retry attempts (WHEN)

® CHICAGO



Determining if a retry bug occurred [Eo

Test oracles

~ HDFS/DFSInputStream.java ~N
bool createBlockReader():

1.while (true) {

2. try {
3. block = refreshBlock(block); —

Inject IOException

8. catch (IOException e) {
9. LOG(“Failed to connect to “
+ dnInfo.addr);

10. addTobeadNodes(dnInfo.info);
11. }
12. }

- J

® CHICAGO



Determining if a retry bug occurred

~ HDFS/DFSInputStream.java
bool createBlockReader():
1.while (true) {

2. try {
3. block = refreshBlock(block);

catch (IOException e) {
LOG(“Failed to connect to “

10. addTobeadNodes(dnInfo.info);
11. }
12. }

.

\

+ dnInfo.addr); <

Test oracles

—— NullPointerException

® CHICAGO




Determining if a retry bug occurred [Eo

~ HDFS/DFSInputStream.java
bool createBlockReader():

1.while (true) {
2. try {

\

Test oracles

3. block = refreshBlock(block); <

catch (IOException e) {
LOG(“Failed to connect to “

IOException

L

—— NullPointerException

+ dnInfo.addr); <
10. addTobDeadNodes(dnInfo.info);
11. }
12. }
- Y,

® CHICAGO




Determining if a retry bug occurred

~ HDFS/DFSInputStream.java ~N
bool createBlockReader():

1.while (true) {
2. try {

3. block = refreshBlock(block); <

IOException

New bug, HDFS-17590 found by WASABI |

catch (IOException e) {
LOG(“Failed to connect to “
+ dnInfo.addr); <
10. addTobDeadNodes(dnInfo.info);
11. }

12. }

- J

—— NullPointerException




Benchmarks and key results

8 open-source systems

(] ; 7
/155% -
77
W A 4

cassandra elasticsearch

G hERbED '

# CHICAGO



Benchmarks and key results

8 open-source systems (& 109 new bug found

1 ; A 7
&
W/ t%my -

cassandra elastlcsearch

# CHICAGO



Benchmarks and key results

8 open-source systems (& 109 new bug found

# CHICAGO



Benchmarks and key results

8 open-source systems (& 109 new bug found

“H"BESHEEA % & largely <12h per system

1 Q
&
/ Q;Wig ? -

cassandra elast|csearch

et o fEEEE

® CHICAGO



Benchmarks and key results

8 open-source systems (& 109 new bug found

“H"BESHEEA % & largely <12h per system

1 Q
P t&%lng %
‘?’;W -

cassandra elastlcsearch @ for 2 bugs found, 1 false positive

® CHICAGO



New retry bugs found by WASABI

42 bugs
(mechanism
& policy)

’ Dynamic testing pipeline

® CHICAGO



New retry bugs found by WASABI

N 87 bugs
\\ (mechanism
\ & policy)

\
I
/
/
42 bugs //
(mechanism s
& policy)

’ Dynamic testing pipeline

(:) Static checking pipeline




New retry bugs found by WASABI

87 bugs
(mechanism

& policy)

42 bugs
(mechanism
& policy)

’ Dynamic testing pipeline

(:) Static checking pipeline




Key takeaways

® CHICAGO



Key takeaways

|
-/@\- Resilience mechanisms, crucial in large-scale systems

# CHICAGO



Key takeaways

|
N\ /

-/@\- Resilience mechanisms, crucial in large-scale systems

—/@\- Bug-finding at mechanism level is needed

# CHICAGO



Key takeaways

|
N\ /

-/@\- Resilience mechanisms, crucial in large-scale systems

—/@\- Bug-finding at mechanism level is needed

NP /ﬁi;.:.\
',@\' LLMs + traditional program analysis = ; #

—_——

\

® CHICAGO



Thank you!

® CHICAGO



	Slide 1
	Slide 2: Retry, task re-execution on errors
	Slide 3: Retry, task re-execution on errors
	Slide 4: Retry, task re-execution on errors
	Slide 5: Retry, task re-execution on errors
	Slide 6: Retry, task re-execution on errors
	Slide 7: Retry, task re-execution on errors
	Slide 8: Retry is crucial in modern systems …
	Slide 9: Retry is crucial in modern systems …
	Slide 10: Retry is challenging to implement …
	Slide 11: Retry is challenging to implement …
	Slide 12: Retry is challenging to implement …
	Slide 13: Retry is challenging to implement …
	Slide 14: Retry is difficult to test …
	Slide 15: Retry is difficult to test …
	Slide 16: Fault retry impacts end users ...
	Slide 17: Fault retry impacts end users ...
	Slide 18: Fault retry impacts end users ...
	Slide 19: Fault retry impacts end users ...
	Slide 20: Fault retry impacts end users ...
	Slide 21: Fault retry impacts end users ...
	Slide 22: Key contributions
	Slide 23: Key contributions
	Slide 24: Key contributions
	Slide 25: Key contributions
	Slide 26: Understanding the challenges of retry
	Slide 27: Key findings from bug reports
	Slide 28: Key findings from bug reports
	Slide 29: Key findings from bug reports
	Slide 30: Key findings from bug reports
	Slide 31: Key findings from bug reports
	Slide 32: Key findings from bug reports
	Slide 33: Key findings from bug reports
	Slide 34: Key findings from bug reports
	Slide 35: WASABI, a toolkit for finding retry bugs
	Slide 36: WASABI, a toolkit for finding retry bugs
	Slide 37: WASABI, a toolkit for finding retry bugs
	Slide 38: WASABI, a toolkit for finding retry bugs
	Slide 39: WASABI, a toolkit for finding retry bugs
	Slide 40: WASABI, a toolkit for finding retry bugs
	Slide 41: Which code snippet performs retry?
	Slide 42: Which code snippet performs retry?
	Slide 43: Which code snippet performs retry?
	Slide 44: Which code snippet performs retry?
	Slide 45: Identifying retry logic
	Slide 46: Identifying retry logic
	Slide 47: Identifying retry logic
	Slide 48: Identifying retry logic
	Slide 49: Identifying retry logic
	Slide 50: Identifying retry logic
	Slide 51: Identifying retry logic
	Slide 52: Identifying retry logic
	Slide 53: Identifying retry logic
	Slide 54: Identifying retry logic
	Slide 55: Finding retry locations & exceptions
	Slide 56: Finding retry locations & exceptions
	Slide 57: Finding retry locations & exceptions
	Slide 58: WASABI, a toolkit for finding retry bugs
	Slide 59: Selecting which tests to run
	Slide 60: Selecting which tests to run
	Slide 61: Selecting which tests to run
	Slide 62: Selecting which tests to run
	Slide 63: Selecting which tests to run
	Slide 64: Selecting which tests to run
	Slide 65: Selecting which tests to run
	Slide 66: Repurposing tests to find retry bugs
	Slide 67: Injecting faults during test runs
	Slide 68: Injecting faults during test runs
	Slide 69: Injecting faults during test runs
	Slide 70: Injecting faults during test runs
	Slide 71: WASABI, a toolkit for finding retry bugs
	Slide 72: WASABI, a toolkit for finding retry bugs
	Slide 73: Determining if a retry bug occurred
	Slide 74: Determining if a retry bug occurred
	Slide 75: Determining if a retry bug occurred
	Slide 76: Determining if a retry bug occurred
	Slide 77: Benchmarks and key results
	Slide 78: Benchmarks and key results
	Slide 79: Benchmarks and key results
	Slide 80: Benchmarks and key results
	Slide 81: Benchmarks and key results
	Slide 82: New retry bugs found by WASABI
	Slide 83: New retry bugs found by WASABI
	Slide 84: New retry bugs found by WASABI
	Slide 85: Key takeaways
	Slide 86: Key takeaways
	Slide 87: Key takeaways
	Slide 88: Key takeaways
	Slide 89

