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Retry is crucial in modern systems ...

@ Improves systems resilience
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Retry is crucial in modern systems ...

@ Improves systems resilience

<é:‘ Last line of defense against soft(hard)ware errors
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Retry is challenging to implement ...

@ No standard code structure

@ Non-trivial to determine which errors to retry or not

@3 Need to handle side-effects of failed tasks
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Retry is difficult to test ...

@ High testing coverage is difficult to achieve
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Retry is difficult to test ...

@ High testing coverage is difficult to achieve

@ Hard-to-replicate transient triggers
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Fault retry impacts end users ...
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Fault retry impacts end users ...

on region stuck in OPENING state
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Fault retry impacts end users ...
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Key contributions

—@- A systematic study of real-world retry bugs
—@- A new framework for detecting retry bugs

-@- Static analysis enhanced by large language models

_/@\- Re-purposed retry-focused unit testing
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Understanding the challenges of retry

70 bug reports 8 open-source systems
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Key findings from bug reports

@ Retry implemented in different, complex ways
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Key findings from bug reports

@ Retry implemented in different, complex ways
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Key findings from bug reports

@3 Retry implemented in different, complex ways

Loops QUEUE
21%

Finite state machines
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Queue re-append
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Key findings from bug reports

@ Existing tests not suited to uncover retry bugs
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Key findings from bug reports

@ Existing tests not suited to uncover retry bugs

0.1 - 0.5% tests labeled for testing retry

Largely check if exception is caught, not buggy behavior
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IF should retry on error (policy)

WHEN to retry, # times, frequency (policy)
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Key findings from bug reports

@ Retry bugs at both policy and mechanism levels

36% IF should retry on error (policy)
33% WHEN to retry, # times, frequency (policy)

31% HOW to implement to handle side-effects (mechanism)
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WASABI, a toolkit for finding retry bugs
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WASABI, a toolkit for finding retry bugs

— ———— ——— r——
[ HOW (mechanism) & WHEN (policy) }
qp — —— | —

Retry discovery Test repurposing Test oracles
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WASABI, a toolkit for finding retry bugs

Retry discovery Pruning & triage

# CHICAGO



WASABI, a toolkit for finding retry bugs

Static checking

=N ) ( \ -
IF (policy) & WHEN (policy) J

<77 — | —
Retry discovery Pruning & triage
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WASABI, a toolkit for finding retry bugs
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Which code snippet performs retry?

HDFS/ScondaryNameNode.java

Retry discovery

HDFS/DFSInputStream.java

a B a ™
bool createBlockReader(): void parse():

1.while (true) { 1.while (true) {

2. try { 2. try {

3. block = refreshBlock(block); 3. block = parser.getBlock(buff);

4. dnInfo = getDNInfFor(block); 4. Tlength += block.length();

5. 1if (dnInfo == null) 5. if (length >= buff.len) {

6. break; 6. break;

7. } 7. }

8. catch (IOException e) { 8. }

9. LOG(“Failed to connect to “+ 9. catch (IOException e) {

dnInfo.addr + “Retried ” + 10. throw new
++retryCount + “ times”); ParseeException(

10. addTobDeadNodes(dnInfo.info); "Unable to parse buffer.);
11. } 11. }

12. } 12.}

./




Which code snippet performs retry?

— HDFS/DFSInputStream.java

bool createBlockReader():

1.while (true) {

~

— HDFS/ScondaryNameNode.java

Retry discovery

void parse():
1.while (true) {

\




Which code snippet performs retry?

— HDFS/DFSInputStream.java

bool createBlockReader():

1.while (true) {
2. try {

7. }
8. catch (IOException e) {

11. }
\12' }

~

Retry discovery

— HDFS/ScondaryNameNode.java

void parse():

1.while (true) {
2. try {

8. }
9. catch (IOException e) {

11. }

12.
12.}

\




Which code snippet performs retry?

Retry discovery

HDFS/DFSInputStream.java

a A\ . N
bool createBlockReader(): void parse():
1.while (true) { 1.while (true) {
2. try { 2. try {
7. 1 [ Retry | [ Not retry |
8. catch (IOException e) { 8. }
9. LOG(“Failed to connect to “+ 9. catch (IOException e) {
dn 1Retried|” +
+retryCountt + © times”);
11. } 11. }
\}2.} \}L}




Identifying retry logic

® CHICAGO

T B
<Y

<>

2
—s | & — > °
1:’;1 (retry locations)




Identifying retry logic

"’”‘1 o] .
—>| = C) —> (retrv locations
Ihb < ! >
<D

‘@‘ Fuzzy code comprehension capabilities of LLMs

® CHICAGO



Identifying retry logic

T B
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<D

‘@‘ Fuzzy code comprehension capabilities of LLMs

‘,@\‘ Traditional data & control flow analysis

® CHICAGO



Identifying retry logic

GPT-4
2

> —>[g]]—> (retry locations)
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Identifying retry logic |

s A
Q: Does the following code perform retry

anywhere ? Answer ( YES ) or ( NO ) .
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** REMEMBER that retry mechanisms can be
implemented through for or while loops or code
structures like state machines and queues .**
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Identifying retry logic |

s A
Q: Does the following code perform retry

anywhere ? Answer ( YES ) or ( NO )

** REMEMBER that retry mechanisms can be
implemented through for or while loops or code
structures like state machines and queues .**

GPT-4 _ _ _
— Say NO 1if the file only _defines_ or
@ _creates_ retry policies , or only passes
| —> (Cp —> <re retry parameters to other builders or c’tors.
()

— Say NO if the file does not check for
exception or errors before retry .

.

S1
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Identifying retry logic

Retry discovery

- A
Q; Does the following code perform retry

anywhere ? Answer ( YES ) or ( NO ) .

** REMEMBER that retry mechanisms can be
implemented through for or while loops or code
structures like state machines and queues .**

GPT-4 _ _ _
— Say NO 1if the file only _defines_ or
@ _creates_ retry policies , or only passes
| —> (Cp —> <re retry parameters to other builders or c’tors.
()

— Say NO if the file does not check for
exception or errors before retry .

— If YES provide the name of the “retry” method
.- - - - - - - - - - - -7 - )

S1
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Identifying retry logic

GPT4
Q
B — [(CIp) —
[ am )

DFSInputStream.java
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Identifying retry logic

GPT-4 - ~

2 A: YES. Retry is
B — (CDJp — | implemented in

[ am )
bool createBlockReader()
DFSInputStream.java \ /
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Finding retry locations & exceptions

Retry discovery

— HDFS/DFSInputStream.java
bool createBlockReader():

1.while (true) {

2. try {
block = refreshBlock(block);
dnInfo = getbDNInfFor(block);
1f (dnInfo == null)

3

4

5.

6. break;

7. } CodeQL
8. catch (IOException e) { ==

9

LOG(“Failed to connect to “+

dnInfo.addr + “Retried ” +

++retryCount + “ times”);

10. addTobDeadNodes(dnInfo.info);
11. }

\}z.} y

~
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Finding retry locations & exceptions

/—

HDFS/DFSInputStream.java

bool createBlockReader():

3. block = refreshBlock(block);
4. dnInfo = getDNInfFor(block);

8. catch (IOException e) {

~

Retry discovery

BlockStruct refreshBlock(...)

throws IOException;

DnInfoStruct getbDNInfFor(...)
throws IOException;

Q CodeQL
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Finding retry locations & exceptions |©

— HDFS/DFSInputStream.java
bool createBlockReader():

3. block = refreshBlock(block);
4. dnInfo = getDNInfFor(block);

8. catch (IOException e) {

12. }

~

® CHICAGO

Retry discovery

BlockStruct refreshBlock(...)
throws IOException;

DnInfoStruct getbDNInfFor(...)
throws IOException;

Q CodeQL

|

{DFSInputStream.java:3, IOException)

(DFSInputStream.java:4, IOException )




WASABI, a toolkit for finding retry bugs
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x= ({DFSInputStream.java:3, IOException)
ol ({DFSInputStream.java:4, IOException )
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Selecting which tests to run

({DFSInputStream.java:3, IOException)
['/@\- Run test suite once, to collect coverage information }

 —
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Selecting which tests to run

({DFSInputStream.java:3, IOException)

Run test suite once, to collect coverage information

 —

b &

Use coverage info to match tests with retry locations

wlle
 —
b &



x= ({DFSInputStream.java:3, IOException)
ol ({DFSInputStream.java:4, IOException )
o Coe e )

@: 7,000+ unit tests in HDFS
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ol ({DFSInputStream.java:4, IOException )
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@: 7,000+ unit tests in HDFS

@ ~30 unit tests cover line 3
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¢z \ {DFSInputStream.java:3, IOException)
oud (DFSInputStream.java:4, IOException )

. ey D

@: 7,000+ unit tests in HDFS

@ ~30 unit tests cover line 3 and 4
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M —> (DFSInputStream.java:3, IOException)
o —> <DFSInputStream.java:4, IOException )

- ey D

@: 7,000+ unit tests in HDFS
@ ~30 unit tests cover line 3 and 4

(& 2 needed to test for retry bugs
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Repurposing tests to find retry bugs

(HDFSInputStream.java:3, IOException)
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Injecting faults during test runs

~ HDFS/DFSInputStream.java
bool createBlockReader():

1.while (true) {
2. try {
3. block = refreshBlock(block) ; <

\
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Test repurposing

Intercept using Aspect] &
inject IOException




Injecting faults during test runs

~ HDFS/DFSInputStream.java
bool createBlockReader():

1.while (true) {
2. try {

8. catch (IOException e) {

\

3. block = refreshBlock(block); —

® CHICAGO

Test repurposing

Jump to catch block




Injecting faults during test runs

Test repurposing

~ HDFS/DFSInputStream.java ~N
bool createBlockReader():

1.while (true) { <

2. try { <—§‘"“*~\\\\
block = refreshBlock(block);

3.

Renter the while loop

8. catch (IOException e) {
9. LOG(“Failed to connect to “
+ dnInfo.addr);

10. addTobeadNodes(dnInfo.info); —
11. }
12. }

- J
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Injecting faults during test runs

~ HDFS/DFSInputStream.java ~N
bool createBlockReader():

1.while (true) { <

2. try { <—~"““-\\\\
block = refreshBlock(block);

3.

N

Test repurposing

How do we know a retry bug happened?

8. catch (IOException e) {
9. LOG(“Failed to connect to “
+ dnInfo.addr);
10. addTobDeadNodes(dnInfo.info); —
11. }
12. }
N Y,
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WASABI, a toolkit for finding retry bugs

<E1§" Crashes with different exception (HOW)
@ Large # of retry attempts or prolonged retry (WHEN)

@ Not “pausing” between retry attempts (WHEN)
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Determining if a retry bug occurred [Eo

Test oracles

~ HDFS/DFSInputStream.java ~N
bool createBlockReader():

1.while (true) {

2. try {
3. block = refreshBlock(block); —

Inject IOException

8. catch (IOException e) {
9. LOG(“Failed to connect to “
+ dnInfo.addr);

10. addTobeadNodes(dnInfo.info);
11. }
12. }

- J
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Determining if a retry bug occurred

~ HDFS/DFSInputStream.java
bool createBlockReader():
1.while (true) {

2. try {
3. block = refreshBlock(block);

catch (IOException e) {
LOG(“Failed to connect to “

10. addTobeadNodes(dnInfo.info);
11. }
12. }

.

\

+ dnInfo.addr); <

Test oracles

—— NullPointerException
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Determining if a retry bug occurred [Eo

~ HDFS/DFSInputStream.java
bool createBlockReader():

1.while (true) {
2. try {

\

Test oracles

3. block = refreshBlock(block); <

catch (IOException e) {
LOG(“Failed to connect to “

IOException

L

—— NullPointerException

+ dnInfo.addr); <
10. addTobDeadNodes(dnInfo.info);
11. }
12. }
- Y,
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Determining if a retry bug occurred

~ HDFS/DFSInputStream.java ~N
bool createBlockReader():

1.while (true) {
2. try {

3. block = refreshBlock(block); <

IOException

New bug, HDFS-17590 found by WASABI |

catch (IOException e) {
LOG(“Failed to connect to “
+ dnInfo.addr); <
10. addTobDeadNodes(dnInfo.info);
11. }

12. }

- J

—— NullPointerException




Benchmarks and key results

8 open-source systems
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Benchmarks and key results

8 open-source systems (& 109 new bug found

“H"BESHEEA % & largely <12h per system

1 Q
&
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cassandra elast|csearch
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Benchmarks and key results

8 open-source systems (& 109 new bug found

“H"BESHEEA % & largely <12h per system

1 Q
P t&%lng %
‘?’;W -

cassandra elastlcsearch @ for 2 bugs found, 1 false positive
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New retry bugs found by WASABI

42 bugs
(mechanism
& policy)

’ Dynamic testing pipeline
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New retry bugs found by WASABI

87 bugs
(mechanism
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42 bugs
(mechanism
& policy)

’ Dynamic testing pipeline

(:) Static checking pipeline
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Key takeaways

|
N\ /

-/@\- Resilience mechanisms, crucial in large-scale systems

—/@\- Bug-finding at mechanism level is needed

NP /ﬁi;.:.\
',@\' LLMs + traditional program analysis = ; #

—_——

\
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Thank you!
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