
If At First You Don’t Succeed, Try, Try, Again...?
Insights and LLM-informed Tooling for Detecting Retry Bugs in Software Systems

Bad policies
(2/3 of bugs)

Broken mechanisms
(1/3 of bugs)

Task re-enqueing

State-machine retry

S1 S2 S3

Study resultsMotivation

WASABI: a toolkit to find retry bugs

Bogdan Stoica, Utsav Sethi, Yiming Su, Cyrus Zhou, Shan Lu, Jonathan Mace, Madanlal Musuvathi, Suman Nath

• Retry is a common defense against faults and
configuration problems at run-time

• Broken fault handling (incl. retry) contribute to
substantial portion of cloud incidents

• Testing retry correctness is challenging: reqs
simulating transient errors and specialized assertions

• Existing bug-detection techniques are not tailored to
specific characteristics of retry bugs

What are causes and symptoms of real-world retry
issues?
How can we fine-tune/augment program analysis
techniques for targeted retry-bug detection?

Classify 70 retry-related issues in 9 open-source applications

• Missing retry caps
• Missing retry delays
• Retrying non-recoverable errors
• Not retrying recoverable errors
• & others

• Wrongly maintained task metadata
• Incorrectly revert system state

Both ad-hoc retry structures & retry loops are common in applications

Identify retry-code locations using combined
structure + context analysis via CodeQL and GPT

CodeQL (loop locations)

Combine structural patterns (e.g. re-entry on exception) with
keyword filtering (log messages, variable names) to distinguish
retry from non-retry loops

GPT-4 (loop + non-loop locations)

• Hints to guide model
towards non-
standard retry modes

• Pinpoint location to
retry-containing
method

• Exclude false
positives (e.g. polling,
retry-configs)

Inject faults during test runs at locations identified in
previous step

bool createBlockReader():

 1. while (true) {
 2. try {
 3. block = refreshBlock(block);
 4. dnInfo = getDNInfFor(block);
 5. if (dnInfo == null)
 6. break;
 7. }
 8. catch (IOException e) {
 9. LOG(“Failed to connect to “+
 dnInfo.addr + “Retried ” +
 ++retryCount + “ times”);
10. addToDeadNodes(dnInfo.info);
11. }
12. }

Different
exception

oracle

Bug detection results

Conclusions

Analyze/monitor test output using
different oracles to pinpoint retry bugs

• Flag cases where failure-causing exception
is different from retry-triggering exception

• Captures diverse retry failure modes
(broken mechanisms)

Missing cap
oracle

Missing
delay oracle

45% of
issues

• Flag cases that continue beyond N
attempts (bad policies)

• Flag cases that do not perform delay-
related calls between executions (bad
policies)

• Retry is necessary to handle transient failures
• We introduce WASABI, a novel suite of techniques to

detect retry bugs using repurposed unit testing &
static checking

• Check out our paper at SOSP and our artifact!
https://github.com/bastoica/wasabi

Additional static checking workflows to
directly infer additional policy bugs from
source code..see paper for details!

• 109 retry bugs found across 8 open-source systems
• Typically <12h per system
• $8 median GPT cost per system
• 1 false per every 2 bugs found

List of (method, retry-causing-exception)
tuples for each location

(300+ retry locs across 8 apps)

Retried method/ex.
identified by

discovery phase

• Can we ID ad-hoc structures in source code for targeted analysis / detection?
• How to distinguish retry loops (other 55% of issues) from non-retry loops?

• Instrument (retried
method, exception)
using AspectJ

• Inject retry-triggering
exception N times
during test runs

• Test-planning phase distributes conflicting retry executions
across multiple unit tests

https://github.com/bastoica/wasabi

	Slide 1

