
If At First You Don’t Succeed, Try, Try, Again...?
Insights and LLM-informed Tooling for Detecting Retry Bugs in Software Systems

Bogdan A. Stoica†∗

bastoica@uchicago.edu
Utsav Sethi†∗

usethi@uchicago.edu
Yiming Su†

yimingsu@uchicago.edu
Cyrus Zhou†

zhouzk@uchicago.edu

Shan Lu†‡
shanlu@microsoft.com

Jonathan Mace‡
jonathanmace@microsoft.com

Madanlal Musuvathi‡
madanm@microsoft.com

Suman Nath‡
suman.nath@microsoft.com

†University of Chicago
Chicago, IL, USA

‡Microsoft Research
Redmond, WA, USA

Abstract
Retry—the re-execution of a task on failure—is a common
mechanism to enable resilient software systems. Yet, despite
its commonality and long history, retry remains difficult to
implement and test.

Guided by our study of real-world retry issues, we propose
a novel suite of static and dynamic techniques to detect retry
problems in software. We find that the ad-hoc nature of retry
implementation poses challenges for traditional program
analysis but can be well suited for large language models;
and that carefully repurposing existing unit tests can, along
with fault injection, expose various types of retry problems.

1 Introduction
Retry is a commonly used mechanism to improve the re-
silience of software systems. It is well understood that many
task errors encountered by a software system are transient,
and that re-executing the task with minimal or no modifica-
tions will succeed. However, retry can also cause serious or
even catastrophic problems. Retry is oftentimes the last line
of defense against various software bugs, hardware faults,
and configuration problems at run time. Unfortunately, like
other fault-tolerance mechanisms [10, 29, 34, 67], retry func-
tionality is commonly under-tested and thus prone to prob-
lems slipping into production. Indeed, recent studies have
identified a substantial portion of cloud incidents related to
broken or unsafe fault-handling mechanisms, including that
of retry [28, 31, 40, 45].

∗Both authors contributed equally to this research.

SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11.
https://doi.org/10.1145/3694715.3695971

Despite its seeming simplicity, it is challenging to imple-
ment retry correctly. First, there are policy-level challenges
regarding whether a task error is worth retrying and when
to retry it. Often it is unclear which errors are transient and
hence recoverable, and such retry-or-not policies require
maintenance as applications evolve. It is also difficult to get
the timing of retry correct: a system that retries too quickly
or too frequently might overwhelm resources, while one that
retries too slowly could lead to unacceptable delays in pro-
cessing. Second, there are also mechanism-level challenges:
how systems should perform retry—how to track job status,
how to clean up the program state after an incomplete task,
and how to launch a job again (and again)—continues to be
prone to defects. These requirements are made more chal-
lenging by the fact that retry is not always a “simple loop”:
forms of retry that utilize asynchronous task re-enqueing,
or circular workflow steps, whose implementation may be
complex and difficult to identify, are common.
In recent years, a number of “resilience frameworks” or

“fault tolerance libraries” have been developed to improve
the resiliency of distributed applications, a major component
of which has been configurable support for retry [23, 32].
But such frameworks, while helpful in some ways, cannot
solve all policy or mechanism problems. While they support
configuration of policy aspects (such as providing automated
retry-on-error), they provide no help in deciding the policies,
e.g. which errors should be retried; nor can they prevent
issues in how retry is implemented. Moreover, their design
can only support simple retry implementations. Instead, non-
loop retry modes and retrying complex tasks—which are
common—are difficult to support.

Testing retry logic presents similar challenges. To ensure
reliability prior to deployment, developers typically run ap-
plications in a controlled, small-scale testing environment.
However, recreating retry conditions requires developers to
first, faithfully simulate transient errors that typically oc-
cur in production, and second, write specialized tests that
exercise retry code paths with high-enough coverage and
specially designed test oracles. Both are challenging and do
not exist in today’s unit testing frameworks.

1

63

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://doi.org/10.1145/3694715.3695971
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694715.3695971&domain=pdf&date_stamp=2024-11-15


The goal of this paper is to systematically study and char-
acterize real-world retry bugs; and provide a solution to help
improve this pervasive and critically important functionality
in software systems.
Understanding the retry challenge. By thoroughly

studying 70 retry-related incident reports from 8 popular
open-source applications in Java, we find that the root causes
of retry-related incidents are about equally common regard-
ing (1) IF to retry a task upon an error (36%), (2) WHEN
and how many times a task is retried (33%), and (3) HOW
to properly retry without leaking resources or corrupting
application states (31%).

By inspecting the retry code fragments in these incidents,
we observe a broad diversity in how retry mechanisms are
implemented, making it difficult to automatically identify
them. There is no dedicated retry API in any of the cases
we studied. In about 55% of the cases, the retry functionality
is implemented as a simple loop, while in 45% of cases it is
implemented as a non-loop structure, either as a finite state
machine or using asynchronous task re-enqueing. Instead,
we find comments, log messages, variable names, and error
codes to offer the clearest evidence of a retry code structure.

By running and analyzing all unit tests of these 8 applica-
tions (thousands to tens of thousands for each application),
we confirm that existing unit tests are poor at exposing
retry bugs. Based on our analysis, close to 10% of the unit
tests invoke a part of the application that could trigger retry.
However, retry almost never occurs during unit testing as
transient errors are extremely rare. About 0.1%–0.5% of unit
tests in these applications contain a mechanism to deter-
ministically inject transient errors, but they only test a tiny
portion of retry logic (e.g., most of them check whether the
injected exception can be caught or not) and are not capable
of catching those most common retry bugs discussed above.

Tackling retry bugs. Guided by these findings, we take
a first step in enhancing the reliability of retry logic by de-
veloping Wasabi [63], a toolkit combining static program
analysis, large language models, fault injection, and unit test-
ing to tackle all three types of retry-related bugs (IF, WHEN,
and HOW problems mentioned above) in both loop and non-
loop related retry. This suite of techniques uniquely enables
bug-finding at the software mechanism level (i.e. retry), for
which traditional program analysis is a poor fit.

Wasabi operates in two workflows—a dynamic testing
workflow and a static checking workflow—that complement
each other. In the dynamic testing workflow,Wasabi auto-
matically alters the execution of unit tests using fault injec-
tion to exercise retry logic and expose retry bugs.Wasabi
does not require developers to create specialized tests, bug
oracles, or other bug-finding policies. Instead, it uses large
language models (GPT-4) and traditional static analysis to
identify the locations of retry and the trigger exceptions of
retry in the source code. This enhances traditional program
analysis with the fuzzy code comprehension capabilities of

Table 1. Applications included in our study

Application Category Stars Bugs

Elasticsearch Full-text search 66K 11
Hadoop1 Distr. storage/processing 14K 15
HBase Database 5K 15
Hive Data warehousing 5K 11
Kafka Stream processing 26K 9
Spark Data processing 37K 9

1 Includes Hadoop Common, HDFS and Yarn

large language models, allowing for more nuanced detec-
tion of retry logic. It then formulates and executes a fault
injection plan, leveraging existing unit tests to probe these
locations under simulated faults. Finally,Wasabi comes with
a set of test oracles that are specially designed to identify
the manifestation of retry bugs.

In the static checking workflow,Wasabi employs a combi-
nation of static control flow checks (CodeQL) and large lan-
guage models (GPT-4) to identify retry-related bugs directly
from source code. This approach extends the bug-finding
capabilities of unit testing by allowingWasabi to check retry
code not covered by existing unit tests. On the other hand,
it can incur more false positives than unit testing and miss
bugs that are related to system run-time states.

In all,Wasabi identifies more than 100 distinct, previously
unknown retry bugs in eight Java applications across all
three types of retry-bug root causes. In particular,Wasabi
identifies 42 retry bugs by repurposing existing unit testing,
and 87 through static analysis, with 20 bugs detected by both.
Detailed comparison shows that repurposed unit testing,
traditional static code analysis, and large language models
each have their own limitations and can well complement
each other in the task of detecting retry related bugs.

2 Understanding Retry Issues
2.1 Methodology
Our study examines popular open-source distributed appli-
cations written in Java that cover various categories as listed
in Table 1. For every application, we search for retry-related
issues by using a set of keywords (retry, resubmit, reattempt,
and reschedule) in their issue-tracking systems (Jira or Github
issue-and-pull system). We look only at issues that (1) are
labeled by developers as bugs, resolved, and valid, (2) have
been fixed or have a patch awaiting merging, and (3) were
reported within the time range of Apr 2018 — Nov 2023.
For every issue, we examine in detail the issue descrip-

tion, developer comments, patches and related source code,
and linked issues if any. We divide retry issues into three
categories based on their root causes, as listed in Table 2. We
discuss each category in detail below and we also discuss
the typical failure symptoms associated with each type.

2

64



Table 2. Root causes of retry bugs

Root Cause Category # of Issues

IF retry should be performed
- Wrong retry policy 17
- Missing or disabled retry mechanism 8

WHEN retry should be performed
- Delay problem 10
- Cap problem 13

HOW to execute retry
- Improper state reset 12
- Broken/raced job tracking 8
- Other 2

Total 70

While we aimed to select a representative set of applica-
tions, the conclusions of our issue study may not generalize
to other applications and systems. Moreover, keep in mind
that we have skipped issues whose descriptions are not clear
for us to fully understand, as well as possible retry issues
whose reports do not contain the we keywords searched.

2.2 IF retry should be performed
Application logic must be selective about whether to retry:
some errors are not transient and may require a different mit-
igation approach. However, deciding IF a failed task merits
retrying can be challenging as we will see below.

2.2.1 Wrong retry policy. About a quarter (17) of the
studied bugs are caused by incorrect retry policy: for 8 of
them, recoverable errors were not retried, causing stuck jobs
or even large-scale performance degradation and system
failure; for 9, non-recoverable errors were retried, which led
to increased job latency or unresponsive client APIs.

Recoverable errors are not retried. In some cases, an ap-
plication has a long list of error codes or exceptions; which of
them could be returned by which functions and which reflect
transient errors and hence should be retried are difficult for
developers to track. For example, in Kafka, after a message is
processed and committed, a response handler will check the
error code, if any, and decide if retry is needed. Given the
asynchronous nature of the execution, the large number of
application-wide error codes in Kafka (74 in total), and the
fact that message-processing and response-handling are lo-
cated in different classes (Listing 1), it is not surprising that
developers forgot to include error-code UNKNOWN_TOPIC_
OR_PARTITION in the retry logic of the response handler —
this error occurs when a message is committed during broker
initialization, which can be recovered when the commit is
tried again after initialization (Issue Kafka-6829).

1 class CommitResponseHandler {

2 void handle(Error e, Future future) {

3 if (e == COORDINATOR_LOAD_IN_PROGRESS ||

4 + e == UNKNOWN_TOPIC_OR_PARTITION

5 ) {

6 future.raise(RetryException ());

7 return;

8 } else {

9 future.raise(DoNotRetryException ());

10 return;

11 }

12 }

13 }

14
15 class ConsumerCoordinator {

16 void commit () {

17 ...

18 sendCommit(msg , new CommitResponseHandler ())

19 }

20 }

Listing 1. Wrong Retry Policy - Recoverable error is not
retried. +: the lines headed by ‘+’ indicate developers’ patch;
the same applies to all figures in the paper. (KAFKA-6829,
Queue-based mechanism)

Even if the list of recoverable error codes/exceptions is cor-
rect, it can be challenging to maintain such a list during the
changes of applications and libraries. An example is HBASE-
25743. HBase relies on the Zookeeper library for coordina-
tion. At some point, the Zookeeper library was upgraded
and would return a new transient error, KeeperException
.RequestTimeout, but this change was not noticed/fixed in
HBase for over one year. A similar problem occurs in KAFKA-
12339: an internal library was modified to return a new tran-
sient exception type UnknownTopicOrPartitionException,
and yet the code calling this library was not changed to retry
upon this new exception. This issue obstructed the worker
from running during synchronization and was labeled as a
critical, high-severity bug requiring an immediate hot-fix.

Non-recoverable errors are retried. In many cases, the
granularity of error codes/exceptions is too coarse, with
non-recoverable errors bundled with recoverable ones. For
example, in HADOOP-16580, the Hadoop Common module
defines a retry policy in which Java’s IOException is retried.
However, this decision is not granular enough: IOException
encompasses a subclass AccessControlException, which
indicates a permission failure and should not be retried.

Such wrong bundling could also occur during error prop-
agation. In HADOOP-16683, function setupConnection cor-
rectly considers AccessControlException as a non-recover-
able error and does not retry it as shown in Listing 2. How-
ever, other code paths in Hadoop may wrap AccessControl
Exception inside the more general HadoopException, with
the latter always getting retried. The patch has to unwrap
HadoopException to differentiate non-recoverable errors
from recoverable ones.

Another common mistake is to bundle task-cancel with re-
coverable errors, causing “cancel” to fail and resource waste.
For example, in Elasticsearch, users can submit analytics jobs
whose results are periodically persisted.

3

65



1 class WebHdfsFileSystem {

2 private HttpResponse run() throws IOException {

3 for(int retry =0; retry < maxAttempts; retry ++) {

4 try {

5 HttpURLConnection conn = connect(url);

6 HttpResponse response = getResponse(conn);

7 return response;

8 } catch (AccessControlException e) {

9 break;

10 // AccessControlException may be wrapped. Fix

11 + } catch (HadoopException he) {

12 + if (he.getCause () instanceof

AccessControlException)

13 + break;

14 } catch (ConnectException ce) {

15 }

16 Thread.sleep (1000);

17 }

18 return null;

19 }

20
21 private HttpUrlConnection connect(URL url) throws

AccessControlException , ConnectException;

22
23 private getResponse(HttpURLConnection conn) throws

IOException;

24 }

Listing 2. Wrong Retry Policy - Non-recoverable error is
retried (HADOOP-16683, Loop-based mechanism)

If the job is cancelled, however, the ResultsPersister
Service treats the cancellation as a recoverable error and
keeps re-trying to write results indefinitely (ElasticSearch-
53687). In HIVE-23894, a TezTask is submitted to a task
queue inside a task processor; however if the TezTask is
canceled, the task processor will mistakenly consider the
task as failed and re-submit it to the queue. The fix again
was to check the canceled flag inside the task, isShutdown,
as shown in Listing 3.

1 class TezTask {

2 boolean isShutdown;

3 void execute ();

4 ...

5 }

6
7 class TaskProcessor {

8 Queue taskQueue;

9 void run() {

10 Task task = taskQueue.take();

11 try {

12 task.execute ();

13 } catch (Exception e) {

14 // FIX: only retry if not canceled

15 + if (task.isShutdown == false) {

16 taskQueue.renqueue(task);

17 }

18 }

19 }

20 }

Listing 3. Wrong Retry Policy: Canceled task is retried
(HIVE-23894, Queue-based Mechanism)

How to catch these bugs? These types of bugs often
manifest through various and hard-to-predict changes in

task/system performance and behavior, and hence are chal-
lenging to identify through dynamic techniques. However,
static analysis might help: statically extracting and identify-
ing inconsistent error-retry policies may be feasible, particu-
larly for retry implementations with straightforward control
flows, e.g. for or while loops (Listing 2).

2.2.2 Missing or disabled mechanism. In a few cases,
developers did not realize the opportunity of retry in a com-
ponent with the retry mechanisms completely missing or
disabled. For example, in Hive, failures to fetch data segments
from a node could be retried by checking other nodes that
may contain redundant data. However, developers did not
implement such retry initially, which hurts the robustness
of related queries (HIVE-20349).

These bugs have similar symptoms as “recoverable errors
not retried” bugs discussed above, but are much harder to
automatically detect or fix—developers’ domain knowledge
is needed to tell whether implementing a retry is feasible.

2.3 WHEN retry should execute
About one third of retry bugs that we studied are related
to the timing of retry. Sometimes, the retry may be overly
aggressive with no delay between each retry attempt (10
issues). This would lead to request flooding at server nodes,
causing large-scale performance degradation or even service
crashes. Sometimes, retry attempts are conducted endlessly,
without a cap on the total number/duration of retry attempts
(13 issues). Infinite retry attempts can cause jobs to hang and
even application crashes due to out-of-memory errors.

2.3.1 Delay problems. Missing delay occurs in all types of
retry code structures, loop retry, queue-based retry, and state-
machine based retry, and may lead to severe consequences.
Listing 4 illustrates such a problem in a state-machine

based retry from HBase. In UnassignProcedure, which re-
distributes ‘regions’ among servers (a core functionality),
the REGION_TRANSITION_DISPATCH state involved a call to
markRegionsAsClosing, which could fail when region server
meta information was awaiting update. The exception was
caught, and state deliberately left unchanged, so that this
step could be retried by the executor. In contrast, if there
is no exception, the state machine moves on to the next
state, REGION_TRANSITION_FINISH. However, no delay was
implemented between retries which, due to the rapid nature
of failure, would congest the StateMachineExecutor pre-
venting other procedures from progressing. Such behavior
cannot be fixed by restarting, as procedures retain state upon
restart. Instead, a critical fix had to be deployed to implement
a delay between retries, as shown in the listing.

1 public class UnassignProcedure extends Procedure {

2 void execute(State currentState) {

3 switch(currentState) {

4 case REGION_TRANSITION_DISPATCH:

5 try {

6 markRegionAsClosing ();

4

66



7 // proceed to next state

8 setState(REGION_TRANSITION_FINISH);

9 } catch (Exception e) {

10 // Fix adds delay before implicit retry

11 + long backoff = (1000 * Math.pow(2,

attemptCount))

12 + Thread.sleep(backoff);

13 return; // implicit retry

14 }

15 case REGION_TRANSITION_FINISH:

16 //...

17 }

18 }

19 }

Listing 4. Missing delay between retry attempts (HBASE-
20492, State-machine procedure)

How to catch these bugs? Since delay is typically imple-
mented by standard APIs (Thread.sleep, TimeUnit.sleep,
etc.), issues in this category can be detected by checking if
a certain API is invoked between two retry attempts either
statically or dynamically. The key challenge is to identify
which code snippets are conducting retry—no standard API
is used for retry, as shown in earlier listings.

2.3.2 Cap problems. Infinite retry attempts should al-
ways be avoided. Sometimes, developers simply forgot to put
any cap on retry. In other cases, configuration problems led to
infinite retries. In HDFS, dfs.mover.retry.max.attempts
configures the maximum number of retries for a mover job.
In HDFS-15439, developers realized that setting this configu-
ration to a negative value would unfortunately allow infinite
retries—HDFS gave up on retry only when the number of
retry attempts equals the configuration, which would never
happen when the latter has a negative value.

Occasionally, broken attempt or time tracking may mistak-
enly cap retries below user-configured values. In YARN-8362,
a state-machine procedure would re-attempt a transition on
failure up to a max count value; however the counter vari-
able was incremented twice, both during state transition and
a subsequent status check, effectively causing max retries to
be half the value configured by the user. There are similar
problems when timeouts are not tracked correctly.

How to catch these bugs? Most issues in this category
lead to too many retry attempts, which can be caught by
testing if (1) a checker can identify each retry attempt (i.e.,
distinguishing a retry attempt from a normal, fresh task);
(2) the reason for a task to fail can persist for a long time
during testing. As for static checking, the challenge will be
identifying which code snippets are conducting retry and
reasoning about the termination conditions of retry.

2.4 HOW to execute retry
Conducting retry correctly is difficult, as it often involves
complicated job status tracking and system state cleanup.
Various semantic bugs in retry execution led to symptoms
like data corruption, resource leaks, request failures, etc.

The most common problem occurs in the metadata main-
tenance of job retry. Coordinating jobs in distributed systems
is a challenge and retry introduces additional complexity.
For example, in Spark, jobs are composed of stages, and the
job manager may retry a stage when it does not respond
within a certain threshold (labeled as ’zombie’). However,
zombie stages could still progress and update status in a map
stageIdToNumTasks, used by the job manager to link stages
to running tasks. Because original and retried stages shared
the same stageId key, modifications by both would corrupt
this map, leading to stuck jobs (SPARK-27630).

Another common source of bugs is incomplete or incorrect
state reset during retry: failed jobs may have performed
partial work or state changes, which need to be properly
reset before retry. For example, HBase uses a state-machine
procedure to truncate tables. One of the state machine steps,
CREATE_FS_LAYOUT, creates a new set of files in HDFS for
the table after the table’s data has been truncated/deleted.
If this step fails to write all files, it is retried; however, files
previously written are not cleaned up, so attempts to rewrite
these files will fail and prevent the entire procedure from
succeeding (HBASE-20616).

How to catch these bugs? The semantic bugs behind
these How-to-retry bugs differ a lot from each other. They
do not conform to a unified code structure and hence are
difficult to detect using program analysis. We hypothesize
that unit testing could be helpful to expose this type of bug,
just like how unit testing is used to expose generic semantic
bugs. We will explore this in the next section.

2.5 Other study findings
Bug severity. The priority labels offered by developers sug-
gest that many of these bugs are problematic: those with
the highest-priority label, “blocker”, account for 5% of our
dataset, and likewise “critical” 10%, “major” 65%, and “minor”
5%, with the remaining 10% unlabeled. This is not surprising:
as we have highlighted earlier, broken retry often leads to se-
rious problems including data corruption, severely impaired
functionality, and application crashes.

Retry mechanisms. As shown by examples earlier, these
issues involve not just simple loop-based retry but also other
more complex forms of retry. Specifically, 25% of issues deal
with asynchronous task re-enqueueing, where a request is de-
fined inside a “task” or “message” object that is re-submitted
to a queue for retry (e.g. Listing 3); and 20% of issues involve
a special case of asynchronous retry which we call “state-
machine” retry, where a framework allows tasks to be defined
as a series of states, and supports retry by re-transitioning
to the current state upon errors (e.g., Listing 4).
All these three types of retry mechanisms impose chal-

lenges for automated retry-bug detection and retry-code
testing. The latter two mechanisms often obscure retry logic
or disperse it across files, making it difficult to understand

5

67



GPT-4

CodeQL

Static Analysis

Phase

Test Repurposing

Phase

Test

Planner

Fault 

Injection 

Module

Test

plan

Retry 

location

triples

Tests Oracles

Phase

Missing cap

Missing delay

Diff exception

Test

reportsSource

file

Figure 1. Repurposed unit testing of Wasabi.

if retry is performed and when. Even for simple loop-based
retry, it may be difficult to differentiate a loop with retry
from those that contain no retry. We will present in detail
how we tackle these challenges in the next section.
Unit tests. For 42 out of the 70 retry bugs in our study,

regression unit tests were added by developers after corre-
sponding bugs were resolved.

Across these 8 applications, about 0.1%–0.5% of their test
cases are labeled to be related to retry (348 unit tests in to-
tal). Most of these unit tests focus on a tiny portion of retry
logic: the unit test throws a retry trigger exception and then
checks if the exception can be caught and delivered to the
right catch block. There are also many of these unit tests
that exercise miscellaneous retry helper functions, like get-
ter/setter functions of retry-related configurations, the retry
condition checking functions, the delay backoff functions,
etc. Finally, some unit tests check whether the execution,
after one retry attempt triggered by an exception explicitly
thrown by it, satisfies a specific safety property. These are
typically regression tests for specific HOW retry bugs.
Overall, we can see that developers value the usage of

unit tests to capture retry bugs. However, developers need
help in the design/synthesis of unit tests that can systemati-
cally exercise core retry logic in their applications with good
coverage and diverse test oracles.

3 Wasabi
Given the different characteristics of IF-, WHEN-, and HOW-
retry bugs, as discussed above, we have designed (1) a test-
ing workflow that repurposes existing unit tests to expose
WHEN and HOW retry bugs (§3.1) and (2) a set of static anal-
ysis routines and prompts that detect IF and WHEN retry
bugs (§3.2). We refer to them together asWasabi [63].

3.1 Exposing retry bugs through unit tests
Modern systems all have extensive unit tests, typically thou-
sands or more, carefully designed by developers. These unit
tests offer a good opportunity to systematically exercise retry
logic and expose bugs of various root causes and symptoms.
However, directly running existing unit tests would not

work for two key reasons. First, the triggers of retry are
typically low-probability events like networking failures, and
hence rarely occur during in-house testing. Second, even if a
retry is triggered and a problematic retry logic is exercised,
the problem may not be caught by existing test oracles that

were designed without retry in mind. With these challenges
inmind,Wasabi uses the following components to repurpose
existing unit tests and expose retry bugs:

1. A static analysis routine that processes program source
code and reports where retry may happen (§3.1.1);

2. A fault injection module that simulates an exception
to trigger retry when exercising unit tests (§3.1.2);

3. A set of test oracles specially designed to catch retry-
related bugs (§3.1.3);

4. A test planner that coordinates among all unit tests so
that all retry locations in unit tests will be exercised
through fault injection in a cost-efficient way (§3.1.4).

For ease of discussion, we refer to a function𝑀 whose exe-
cution error causes itself to be re-executed as a retriedmethod,
such as connect and getResponse in listing 2, task.
execute in listing 3, and markRegionAsClosing in listing 4.
We refer to the caller function of𝑀 that catches the error and
conducts the retry as the coordinator method (e.g., function
run in listing 2 and listing 3, and execute in listing 4). The
execution error of the retried method typically is reported
to the coordinator through exceptions (70% of the cases in
our study) or error codes (30%). The current prototype of
Wasabi focuses on exceptions, which we refer to as retry
triggers. Finally, we refer to the call site of the retried method
inside the coordinator method as a retry location.

3.1.1 Identifying retry locations. The main challenge
is that retry code does not have a unique code pattern for
traditional program analysis to search for. For example, loop-
based retry (listing 2) all involve try-catch blocks in loops,
but there are also many loops with try-catch that do not
offer retry—a method could be repeatedly invoked in a loop
for processing different inputs, instead of for retry. Non-
loop retry that involves queues (listing 1, listing 3) and state
machines (listing 4) are even harder—it is difficult to tell
whether a method would be re-executed from this code, not
to mention whether the re-execution is for retry or not.
To tackle this challenge, we design two complementary

techniques that leverage structural and non-structural code
elements like variable names and comments, which we ob-
served to be much better indicators of retry logic than pro-
gram structure alone. The output of both techniques is a list
of retry-location triplets: a coordinator method 𝐶 , a retried
method𝑀 , and a retry-trigger exception 𝐸, as defined above.

The first technique identifies loop retry using control-flow
analysis and naming conventions. Note that we leave the
detection of non-loop retry to the second technique below,
as there is no effective way to detect non-loop retry using
traditional control/data-flow analysis.

Using CodeQL [22], a query-based static analysis tool, we
first apply traditional control-flow analysis to identify every
loop whose header is reachable from at least one catch block
inside the loop body—an indication of potential retry through
exception handling. We then check if the loop body or loop

6

68



condition contains any string literals, variables, or methods
whose names include “retry” or “retries”. For example, the
loop header in listing 2 is reachable from the catch block on
Line 14, although not from the catch block on Line 8; the
loop also contains a counter variable named retry.
Once we identify such a retry loop 𝐿, the static analysis

checks the prototype of every method𝑀 invoked in the loop
to see whether 𝑀 could throw an exception 𝐸 so that the
header of loop 𝐿 is reachable from the catch block of 𝐸. If
such an exception 𝐸 is found, 𝐸 is considered a potential retry
trigger, the call site of𝑀 inside loop 𝐿 is identified as a retry
location, and the method that contains this call site is a coor-
dinator method. For example, in Listing 2, Line 5 is identified
as a retry location, as the callee method connect there could
throw exception ConnectException, whose catch block on
Line 14 can reach back to the loop header.
The second technique covers both loop and queue/state-

machine retry mainly using large language models. Specifi-
cally, we prompt GPT-4 to identify potential retry logic, with
the prompt explicitly reminding GPT-4 of different ways to
implement retry (Q1 in Figure 2), and feed GPT-4 one file
at a time across the entire codebase. Once GPT-4 reports a
method 𝐶 as one that implements retry (using a follow-up
prompt of Q1 not shown in Figure 2), we use a simple Cod-
eQL query to identify all methods invoked by 𝐶 as potential
retried methods and all exceptions thrown by them as poten-
tial retry triggers. Note that we go back to CodeQL for the
latter step, because callee methods are often implemented in
a different file from the caller, which limits GPT-4 regarding
which callee may throw what exceptions.

Our retry location identification is neither sound nor com-
plete. It may report a retried method𝑀 and its exception 𝐸
that actually cannot be caught by the caller to trigger the
retry of 𝑀 . Fortunately, our test oracles handle these anal-
ysis inaccuracies, preventing them from causing false bug
reports, as explained in §3.1.3. As we will see in the evalua-
tion (Section 4.2), our retry-location identification is mostly
accurate in practice.

3.1.2 Simulating a trigger exception. Once a retry loca-
tion 𝐿 is identified,Wasabi can instrument a unit test that
exercises 𝐿 so that a retry-trigger exception is thrown during
the test. Of course, static analysis may report that multiple
exceptions could be thrown at a retry location and trigger
retry, in which case Wasabi creates multiple unit retry tests,
each with one type of exception injected.

We implement this instrumentation using AspectJ, which
allows us to register a handler (a pointcut in AspectJ), that
gets executed right before a callee method (i.e., a retried
method) is invoked by a caller method, both specified by us
(i.e., a coordinator method). As illustrated in listing 5, the
handler takes as arguments the callee method name, the
caller method name, and the exception to be thrown. The
handler simply (1) throws the exception if this particular

injection point was reached less than 𝐾 times, and (2) writes
a corresponding entry into the test log.

1 onCallAt(callee , caller , exception) {

2 int callCount = hashTable.get({callee , caller ,

exception })

3 if (callCount < K) {

4 log.debug("Injected {exception} {callCount + 1} times

, at callsite {callee} invoked from {caller}");

5 hashTable.set({callee ,caller ,expcetion},callCount +1);

6 throw new exception ()

7 }

8 }

Listing 5. Exception Throwing Handler Pseudocode

To decide the value of 𝐾 , we consider how many retry
attempts are needed to expose a retry bug. For each unit
test that targets a specific retry location and retry trigger,
Wasabi runs it twice with two different settings of 𝐾 : 1
and 100. The latter number is chosen to safely exceed all
application-configured thresholds. This exercises different
aspects of retry: with 𝐾 = 1, the unit test can exercise the
code after the retry and get a chance to expose HOW retry
bugs—e.g., incorrect state clean-up (§2.4); with 𝐾 = 100, the
unit test can exercise the retry cap and delay mechanism
(§2.3), yet the application code after the retry logic may not
execute if the application times out.

3.1.3 Retry test oracles. Every unit test comes with test
oracles often in the form of assert statements, so that soft-
ware bugs can manifest as test failures. However, retry bugs
may not violate existing test oracles—they might degrade
application performance, but not trigger crashes; or they
might lead to unexpected data corruption that does not vio-
late existing assertions. Furthermore, a violation of existing
test oracles may not reflect true bugs under our exception
injection scheme, as we will explain later.

To tackle this challenge, we designed three retry-specific,
application-agnostic test oracles.
“Missing cap” oracle. This oracle classifies test runs

based on the number of retry attempts, and is meant to catch
“cap problems” of WHEN-retry bugs. In theory, missing cap
retry bugs are characterized by an unbounded number of
retry attempts (§2.3.2). In practice, retry caps are typically
no more than 20 retry attempts or 10 minutes [14–21]. In the
current prototype of Wasabi, each test-run log is examined
to see if any fault injection handler (listing 5) has either
thrown 100 exceptions or ran for more than 15 minutes. If
so, a missing-cap bug is reported.

Rare cases where a callee method is invoked 100 times for
reasons other than retry (e.g., handling different tasks) could
lead to false positives in Wasabi. Similarly, while a unit test
might correctly run for over 15 minutes, this is extremely
rare as tests, in our experience, typically terminate within
approximately 30 seconds.

“Missing delay” oracle. This oracle is designed to catch
“delay problems” in WHEN-retry bugs (§2.3.1). It checks

7

69



testing-run logs to see if there were any delays between
consecutive retry attempts, and reports missing-delay bugs
if there is no delay between successive retry iterations.
Wasabi registers an AspectJ handler to generate a log

entry together with the call stack right before every thread
sleep API (i.e., Thread.sleep, Object.wait, TimeUnit.sl
eep, TimeUnit.timedWait, TimeUnit.scheduledExecut
ionTime, Timer.wait, and Timer.schedule). After each
test, Wasabi checks the log to see if there is a sleep call in-
between two consecutive fault injections from the same retry
location. Wasabi compares the call stack to only consider a
sleep invoked from the corresponding coordinator.

“Different exception” oracle. This oracle checks excep-
tion(s) thrown by the test code, not by Wasabi handlers,
and flags an execution as potentially buggy when the excep-
tion is different from the one Wasabi injected. This oracle is
designed to find HOW-retry bugs (§2.4).
To maintain accuracy, this oracle intentionally avoids re-

porting correct behavior where, after a few retry attempts,
the unit test gives up and re-throws the same exception
that was initially injected by Wasabi. While this causes the
unit test to crash, it is typically correct behavior as it allows
the upper layer to handle the error. Additionally, the ora-
cle avoids reporting false positives resulting from our static
analysis inaccuracies (§3.1.1): if an injected exception is not
a retry trigger, the unit test will crash and throw the injected
exception without being flagged as a bug.

3.1.4 Tests preparation. There are a few remaining road-
blocks forWasabi to effectively utilize unit tests.

Restoring default retry configurations. Sometimes de-
velopers deliberately restrict retry in unit tests, by explicitly
overriding the default configuration of the maximum num-
ber of retry attempts to 0, 1, or 2 (in about 10% of the test
cases that cover retry logic based on our study). To counter-
act developer-imposed restrictions on retry logic, we use a
Python script to scan every unit test and pinpoint instances
where retry parameters are altered. Next, we override these
values with the default ones in the application’s configu-
ration files or documentation. This ensures that Wasabi’s
retry testing accurately reflects the intended retry behavior
without artificial limitations.

Fault-injection planning. A naive testing plan that in-
jects trigger exceptions at every retry location in every unit
test would lead to insufficient testing of some retry locations
and redundant testing of others: (1)When a unit test contains
multiple retry locations (e.g., the invocations of connect and
getResponse on line 5 and 6 in Listing 2), injecting excep-
tions at an early location could cause later retry locations
to be skipped—the coordinator method may terminate after
several retry attempts at the early location. (2) One retry
location and its corresponding coordinator method are often
covered by multiple unit tests; repeatedly triggering retry

attempts at the same location across different unit tests is
often a waste of testing resources.
To improve this naive plan, before any fault injection,

Wasabi instruments every retry location reported by its
static analysis, and runs the entire test suite once to figure
out which retry locations are covered by every unit test at
run time. Wasabi then conducts a test planning, with the
resulting plan being a list of {unit-test, retry location} pairs.
Wasabi’s planning ensures every retry location that could be
covered by the test suite appears exactly once in the plan list;
Wasabi also tries to maximize the number of unique unit
tests covered by this plan, although there is no guarantee.
Specifically, Wasabi iterates through every unit test one by
one. For each test 𝑡 , Wasabi identifies its first retry location
ℓ , if any, that is not yet covered, adds {𝑡 , ℓ} to the plan, and
moves on to the next test case. After iterating through every
test case once, if there are still uncovered retry locations,
Wasabi iterates through every unit test again (and again),
until every retry location is included in the plan.

For each pair in the test-plan list, Wasabi uses AspectJ to
turn a unit test into a series of unit retry tests that exercise
retry triggered by different exceptions associated with that
retry location, as discussed in §3.1.2.

3.2 Detecting retry bugs through static analysis
Wasabi’s unit testing depends on the quality and coverage
of existing test suites. Moreover,Wasabi’s test oracles do not
cover IF bugs. To fill in these gaps, we include static analysis
routines/prompts as part of Wasabi’s detection suite.

3.2.1 WHEN bug detection using GPT-4. To identify
additional WHEN bugs, we use a LLM prompt-based design.
This allows us to find bugs in both loop and non-loop retry
forms, such as the one in Listing 4. OurWHEN bug-detection
prompts are a series of yes/no interactions about possible
missing cap or delay problems, along with the contents of
a single application source file (Figure 2). The prompts in-
clude clarifications to improve detection of different types of
retry-related behaviors, such as asynchronous scheduling-
based delay, as well as clauses to reduce the incidence of
false positives—e.g. exclusion of non-retry related timeouts.
The prompts were arrived at by experimenting with different
hints, word choices, and code formatting. We also include an
additional prompt to address one more type of false positive:
GPT-4 will often label cases that implement spin-lock- or
polling-related functionality as retry. As these do not con-
form to our definition of retry (i.e. re-execution on error),
we use this prompt to exclude these cases.

3.2.2 IF bug detection using CodeQL. Wasabi’s fault
injection and unit testing can help discoverWHEN andHOW
bugs, but not IF bugs—we cannot tell whether a task error is
recoverable or not when the error is injected.
Therefore, as a part of theWasabi toolkit, we propose a

static technique that reports likely IF bugs in a statistical
8

70



1 Q1. Does the following code perform retry anywhere

? Answer (Yes) or (No).

2 - Say NO if the file only _defines_ or _creates_

retry policies , or only passes retry

parameters to other builders/constructors.

3 - Say NO if the file does not check for exception

or errors before retry.

4 ** Remember that retry mechanisms can be

implemented through for or while loops or

data structures like state machines and

queues .**

5 < Entire file contents >

6

7 Q2. Does the code sleep before retrying or

resubmitting the request? Answer (Yes)or(No).

8 ** Remember that delay might be implemented

through scheduling after an interval or

some other mechanism .**

9

10 Q3. Does the code have a cap OR time limit on the

number times a request is retried or

resubmitted? Answer (Yes) or (No).

11 ** Remember that timeouts or caps should be

specifically applied to retry and not other

behaviors **

12

13 // Used to exclude poll/spin -lock -related cases

14 Q4. Do any of the retry -containing methods either

call "compareAndSet" or contain poll -related

behavior? Answer (Yes) or (No)

Figure 2. GPT-4 prompts used inWasabi

way—if an exception is (not) retried in most places across
a codebase but not (is) in few cases, even though the retry
mechanism was there, those outliers are flagged as potential
IF bugs. Here, we focus on traditional CodeQL-based static
analysis and loop-based exception retry mechanism.

For each given exception E, our analysis counts the num-
ber of retry loops 𝑁𝐸 where 𝐸 could be thrown—the retry
loops are identified by CodeQL as discussed in §3.1.1 and the
exceptions that could be thrown in each loop are identified
by analyzing signatures of callee methods of the loop. We
then count the subset of these cases 𝑅𝐸 where the exception
is retried, by analyzing whether there exists an exception-
catching basic block with a branch that returns control to
the start of the loop, as discussed in §3.1.1.
We use the application-wide retry ratio, 𝑅𝐸

𝑁𝐸
, to infer re-

coverability of the exception 𝐸 and identify outliers: when
this ratio is very close to 1 (or 0) but is not equal to 1 (or 0),
Wasabi would report the outliers as a reminder for develop-
ers to check the retry policy decision.

5 HOW bugs

by repurposed unit test

37 WHEN bugs by 

repurposed unit test

79 WHEN bugs

by GPT-4

8 IF bugs 

by CodeQL

20

in 

common

Figure 3. Bugs found byWasabi unit testing and static check-
ing illustrated as different circles.

4 Evaluation
We evaluate Wasabi on largely the same set of applications
used in our issue study. The difference is that (1) we used the
latest version of each application as of March 2023 when we
started designing Wasabi; and (2) we excluded Kafka and
Spark from the set, and instead added MapReduce and Cas-
sandra. We excluded Kafka because its retry logic is predom-
inantly driven by error codes and application state, rather
than exception handling, and hence is out of Wasabi’s scope.
We excluded Spark, because of an incompatibility with the
AspectJ Maven plugin [56]. Overall, we used 8 applications in
our evaluation: Hadoop-Common (HA), HDFS (HD), MapRe-
duce (MA), Yarn (YA), HBase (HB), Hive (HI), Cassandra
(CA), and ElasticSearch (EL).

We ran each application on an Ubuntu 22.04.3 LTS ma-
chine, with a 12-core Intel i7-8700 CPU, 32 GB of RAM, and
512 GB of disk space. We relied on both Java 8 and 11, Maven
3.6.3, AspectJ 1.9.19, and theAspectJMaven plugin 1.13.1 [56].
Additionally, ElasticSearch requires Gradle 4.4.1, instead of
Maven, as the build system.

4.1 Results on Bug Detection
In total,Wasabi reports 191 distinct retry problems across
all 8 applications evaluated, with its repurposed unit tests
reporting 63 WHEN and HOW retry problems, its GPT-4
static checker reporting 139 WHEN retry problems, and its
CodeQL checker reporting 9 IF retry problems. We have
carefully examined everyWasabi report and identified 109
of them as true bugs—Wasabi unit testing has a false positive
rate of 2 true bugs vs. 1 false positive, and Wasabi static
analysis has a rate of 1.4 true bugs vs 1 false positive. We are
releasingWasabi [63] along with a detailed description of
every bug reported by our tool together with our paper.
We illustrate the distribution of the 109 reports that we

deem to be true bugs in Figure 3, and explain them in detail
below. §4.3 will discuss the 82 false positives in detail.

Wasabi unit testing. As illustrated in Figure 3, Wasabi
identifies 42 bugs through its repurposed unit testing: 20 are

9

71



missing-cap WHEN problems (i.e., infinite retry); 17 missing-
delay WHEN problems (i.e., aggressive retry without delay);
and 5 issues related to HOW retry is implemented. Those 5
HOW-retry bugs were exposed by injecting a retry-trigger
exception just once, while the other bugs were exposed by
injecting retry exceptions 100 times, as discussed in §3.1.2.
As an example, after Wasabi injects SocketException

once while running testSaveAndLoadErasureCodingPolicies of
HDFS, the test fails with NullPointerException.Wasabi’s
“different exception” oracle flagged this as a potential bug.
After inspection, we realized that when a transient error
happens too early in function createBlockReader, not all
objects are properly allocated. However, the catch block
that handles SocketException assumes all objects were con-
structed and attempts to log the current program state. This
logging results in a NULL pointer dereference.
Note that, one bug can cause multiple Wasabi unit test

runs to fail. For example, the above bug also caused crashes
when exceptions were thrown at two other retry locations in
the same retry loop. The “different exception” oracle consid-
ers two crash failures as the same bug if they have the same
crash stack; the “missing cap” and “missing delay” oracles
group test reports based on retry code structures (e.g., only
one missing cap/delay bug is counted for each retry loop).

WithoutWasabi, the probability of exposing any of these
bugs during unit testing is extremely low, if at all. Indeed,
we have run the original test suite without Wasabi many
times, and none of the problematic retry logic is exercised.
Even if these bugs are exposed during testing by luck, they
cannot be effectively handled by existing test oracles, which
we will discuss more in §4.4.

Wasabi static checking. Wasabi’s GPT-4 based bug de-
tection, presented in §3.2.1, finds 79 WHEN bugs. Of these,
20 are also found by fault injection. Comparing GPT-4 and
Wasabi’s repurposed unit testing, the false negatives of the
latter are mainly due to the lack of code coverage of existing
unit tests, while the false negatives of the former are mainly
due to GPT-4 struggling to reason about large files and hence
not even realizing the existence of retry, which we will elab-
orate in the next sub-section. Also note that, although GPT-4
identified more WHEN bugs than unit testing (79 vs. 37), it
also reported more false positives (60 vs. 16). Overall, GPT-4
and unit testing complement each other well.
As discussed in §3.2.2, Wasabi’s IF bug detection uses

CodeQL to compute the application-wide retry ratio for each
exception. Wasabi finds 9 outlier cases in total where an
exception is mostly but not always retried (i.e., retry ratio
≥ 2

3 ), or the other way around (i.e., retry ratio ≤ 1
3 ). We

have manually checked all cases and believe 8 of them to
be truly problematic. These 8 cases come from 5 applica-
tions (1 in Hadoop, 1 in Yarn, 3 in HBase, 2 in Hive, and 1 in
Cassandra), and involve these 5 exceptions with their retry
ratio in parentheses: Zookeeper.KeeperException (17/20),

205 retry loops

by CodeQL

106

in common

140 retry loops & 

84 other retry structures

by GPT-4

Figure 4. Retry code structures identified.

Thift.TTransportException (2/3), IllegalArgumentExcep-
tion (2/9), Hadoop.ExitException (1/3) and IllegalStateExcep-
tion (1/3). For example, KeeperException can be thrown
due to transient network errors such as timeout or connec-
tion loss, and is retried in 17 out of 20 places where it is
caught inside a retry loop.

4.2 Retry Code Identification and Coverage
Retry code identified. As shown in Figure 4, Wasabi

identifies 323 code structures across all 8 applications where
retry logic is implemented. About 70% of them are loops
(i.e., 239 retry loops in total), while the rest implement retry
through finite state machines and task re-enqueuing.
Comparing the two approaches, CodeQL cannot detect

non-loop retry but did manage to identify more than 85% of
the retry loops reported by the two techniques. Naturally, it
missed retry loops that contain no string literals, variables, or
methods whose names include “retry” or “retries”. GPT-4 has
the advantage of identifying non-loop retry, but it missed
100 retry loops. Our investigation showed that these are
located in 53 different large files. On average, these files are
almost twice as large (mean: 10,539, median: 9,304 tokens)
than those where GPT-4 does identify retry logic.
Both approaches occasionally mislabel locations. A man-

ual examination of 40 sampled retry loops identified by Cod-
eQL reveals 3 false positives: an attempt to obtain a lock and
failure logging if unobtainable after n “retries”; an attempt
to generate a unique string and failure after n “retries”; and
token-by-token parsing of a request which may contain a
“retryOnConflict” parameter. The locations found by GPT-4
have a slightly higher false-positive rate: of 100 sampled loca-
tions, we find 16 false positives, which contain re-execution
behavior such as iterating through queues, or status-update
polling; as well as object parsing or construction that con-
tains a retry-named parameter. Fortunately, these false pos-
itives do not affect the accuracy of Wasabi unit testing:
injecting exceptions at non-retry code would cause a test
to crash with the same exception, which would be pruned
outWasabi’s “different exception” oracle. However, the false
positives in GPT-4’s retry identification are connected with
the false positives in its bug identification.

10

72



Table 3. Retry bugs reported byWasabi unit testing (subscripts: # of false positives; -: no report).

Retry Bug Type Hadoop HDFS MapReduce Yarn HBase Hive Cassandra ElasticSearch Total

WHEN bugs: missing cap 21 72 - 11 132 31 10 11 288
WHEN bugs: missing delay 32 63 51 - 62 20 20 10 258
HOW retry bugs - 42 - - 42 21 - - 105
Total 53 177 51 11 236 72 30 21 6321

Table 4. Retry bugs reported byWasabi GPT-4 detector (subscripts: # of false positives)

Retry Bug Type Hadoop HDFS MapReduce Yarn HBase Hive Cassandra ElasticSearch Total

WHEN bugs: missing cap 33 94 33 20 165 76 104 108 6033
WHEN bugs: missing delay 74 92 41 40 164 176 51 179 7927
Total 107 186 74 60 329 2412 155 2717 13960

Table 5. The number of static retry code structures identified
and covered inWasabi unit tests

App. HA HD MA YA HB HI CA EL

Identified 38 41 16 18 98 59 15 38
Tested 12 27 12 11 48 14 6 5

Retry code covered in testing. Table 5 shows the break-
down of retry code structures identified in each applica-
tion, as well as how many of these retry code structures get
covered byWasabi in its unit testing. Two key factors con-
tributed to some retry structures not covered byWasabi unit
testing: (1) as discussed earlier, Wasabi unit testing focuses
on exception-triggered retry only and hence cannot cover
error-code triggered retry; (2) some retry code structures are
not covered by any existing unit test. For example, Hive (HI)
and ElasticSearch (EL) have a large portion of error-code
related retry, and hence have the lowest retry coverage. For
the remaining 6 applications, Wasabi unit testing is able to
cover 32% – 75% of the retry code structures.

4.3 Cost and False Positives
Cost ofWasabi. For most of these 8 applications,Wasabi

unit testing took around 10 hours, with HBase taking the
most time (close to 20 hours). The majority of the time is
spent on running the test cases, with less than 1% spent
on static analysis or post-mortem log processing. The test
run time can be further broken down into two parts. First,
the time to run every test in the test suite once to figure
out which test case covers which retry location, as part of
theWasabi test planning (§3.1.4). This takes 18%–32% of the
total run time—all these applications come with thousands or
tens of thousands of unit tests, as shown in Table 6, that take
more than an hour to run. Second, the time to run allWasabi
repurposed unit tests with injected exceptions, which takes

Table 6. Details of Wasabi unit testing

App. # Unit Tests #Wasabi Test Runs

Total CoverRetry w/o planning w/ planning

HA 7296 841 9156 54
HD 7642 405 7834 110
MA 1468 393 2940 48
YA 5757 764 4764 42
HB 7052 1438 4248 158
HI 35289 1505 2506 36
CA 5439 952 1132 26
EL 12045 1388 1802 28

the remainder of the test run time. SinceWasabi is designed
for in-house testing, we consider the overheads acceptable.
Note that, exceptions and exception handling are very

costly, not to mention that one of Wasabi’s fault-injection
policies is to throw up to 100 exceptions or terminate a unit
test at 15 minutes. Wasabi’s repurposed unit testing only
increases the original unit testing time by 2X–5X, instead of
hundreds to thousands of times, because only a portion of
unit tests actually cover retry locations (4%–27% across all ap-
plications as shown in Table 6). More importantly, Wasabi’s
planning stage makes sure that retry locations are not repeat-
edly tested across different unit tests (§3.1.4), which helps
cut the number of fault-injection testing runs by 27X–170X,
as shown by the last two columns of Table 6.

Cost of GPT-4. To execute the workflow that involves
GPT-4, namely retry location identification and static WHEN
bug detection (Figure 4, Table 4), the median number of GPT-
API calls we made for each application was about 2600 (1
call per file and follow ups). The median amount of data
sent through these API calls is around 16MB and 3.3M to-
kens for each application. At publication time, the monetary

11

73



cost of processing this volume of data using the GPT-4 API
was about 8 USD per application. Costs may be further re-
duced through additional filtering steps, e.g., excluding from
analysis files that clearly do not perform I/O.

False positives of unit testing. Through the repurposed
unit testing,Wasabi reported 63 bugs in total. Our investi-
gation shows 21 of them to be false positives.
There are 5 false positives reported byWasabi as HOW

bugs. In all 5 cases, applications caught the injected excep-
tion, wrapped it inside a general exception, and the general
exception led to a crash. These failures were wrongly labeled
as HOW bugs by Wasabi’s “different exception” oracle. Fu-
ture work may prune these false positives by analyzing the
exception propagation and wrapping chains.

There are 8 false positives reported byWasabi as missing-
delay WHEN bugs. For all these cases,Wasabi’s judgment is
correct—the application indeed did not take a break between
consecutive retry attempts. However, our manual inspection
found that the delay may not be necessary as small changes
were made between consecutive retry attempts. For exam-
ple, in HDFS, when a file-block fetching fails, the retry will
ping a different replica node. In this case, we conservatively
considerWasabi’s bug report as a false positive.
Finally, there are 8 false positives reported by Wasabi

as missing-cap WHEN bugs. In these cases, the application
actually has a cap for the number of retry attempts, and
chooses to propagate the exception to an upper level after
the cap is hit. However, the upper level turns out to be the test
harness, which ignores the exception and continues the unit
test. Making things worse forWasabi, in these unit tests, the
method associated with the fault injection handler is invoked
by the test harness many times to handle different tasks. As
a result, the 100 retry attempts occurred across many tasks
and triggered a false missing-cap bug report. Future work
that makesWasabi more aware of the call context may be
able to resolve most of these false positives.

False positives of static bug detection. WHEN bug de-
tection using GPT-4 reports 60 cases that do not appear to be
actual retry bugs. In 29 cases, GPT-4 labels non-retry-related
files as containing retry. For example, the prompt that asks
GPT-4 to differentiate poll- or lock-behavior from retry is not
always successful. In 16 cases, the false positive appears to be
caused by limitations of single-file input: for example, a retry
reported to be missing delay, but does call a sleep-containing
helper method defined in a different file. Lastly in 15 cases,
GPT-4 appears to wrongly comprehend code behavior. For
example, identifying a missing cap when there is indeed an
explicit comparison and exit condition on attempts.
IF bug detection using CodeQL incorrectly reports one

case: it declares FileNotFoundException to be retried in 1/4
cases, when it is actually never retried. The wrong outlier
result is due to ancilliary boolean variable-based control flow
not analyzed by our script.

4.4 Other results
If Wasabi did not use keyword filtering to support CodeQL,
it would have reported 3.5x more retry loops across 8 applica-
tions (i.e., 725 vs. 205). Manual check of these cases indicates
that most, if not all, are not related to retry: these loops may
iterate through lists of items, poll for status updates, or re-
peatedly execute a periodic task; catch blocks may be used
to simply track or log errors, or ignored; and exceptions may
be informative rather than represent transient errors.

The three test oracles (§3.1.3) are crucial for Wasabi unit
testing. Without these test oracles, there will be a large num-
ber of additional false negatives (i.e., all missing-delay bugs
and the majority of the missing-cap bugs will be missed),
and false positives. For example, about 90% of test crashes
encountered byWasabi testing are caused by unit tests re-
throwing the injected exceptions, and are correctly filtered
out byWasabi test oracles.

4.5 Discussion
Mitigating false positives.Most of Wasabi’s unit testing
false positives may be removed through further analysis of
the call and exception contexts, as discussed above.
Many of the static detection false positives may be re-

moved by collating the results of static detection with unit
testing results. For code segments not covered by unit tests,
other avenues for reducing false positives include: 1) ap-
pending the content of a method 𝑀 callee function from a
different file into the prompt referencing𝑀 , or 2) reducing
the token size of large files using prompt-compression tech-
niques [35, 36]. For the specific cases where GPT mistakenly
identifies non-retry code to be retry-related, the effect of
false positives may be mitigated by presenting every bug
report in two parts: which code snippet is considered as retry
(easily reviewable by developers), and a description of the
bug. We also expect the accuracy of our LLM-based static
analysis to improve with future LLM models.
Note on false negatives. It is difficult to precisely mea-

sure the false negatives of a bug-detection tool. Looking at
the root cause categories listed in Table 2, those “missing or
disabled retry mechanism” bugs are not covered in the design
of Wasabi and will cause false negatives. Furthermore, if a
bug is caused by software misconfiguration, which happens
to about 10% of the cases in our dataset, it will be missed by
Wasabi unless the unit tests use the same mis-configured set-
ting. A false negative could occur even for a bug whose root
cause is covered by Wasabi when 1) existing unit tests do
not cover related code and/or 2) the retry location is missed
by CodeQL and the LLM.
Broader system design considerations. Some design

considerations would improve the quality of retry and sys-
tem at large. For one, the systems we studied display an
overall lack of consistency in encoding retry-errors: applica-
tions will retry based on error-code in some instances and

12

74



on exceptions in others (even within the same file); wrap ex-
ceptions in an ad-hoc way; or use too-general errors, making
accurate retry-or-not decisions difficult. Retry structures are
also widely inconsistent—a single application might include
a range of unique local implementations of queue or state-
machine based retry. Reducing variance of retry structures
and error definitions would help improve the correctness
and maintainability of retry-related code.
Another consideration is that application testing frame-

works and conventions are ill-suited to isolated and sys-
tematic retry testing. For example, tests will frequently dis-
able retry or enforce restrictive timeouts, which are diffi-
cult to override without tedious workarounds; or use error-
mitigating procedures in test harness code that conceal gen-
uine retry problems. More flexible testing frameworks with
built-in support for retry-test configurations would reduce
the burden of implementing comprehensive retry tests.

5 Related Work
Error handling is one of the main root causes of production
failures [26, 27, 45, 65]. Some past work used static analysis
to check error specifications [34], error propagation [29, 42,
58], and task cancellation anti-patterns [59]. Others used
dynamic analysis and, in particular, fault injection [3–6, 8,
9, 11, 26, 30, 37, 39, 40, 47–52, 55, 61, 67]. These techniques
are not tailored to automatically expose retry-related bugs.
Consequently, they differ fromWasabi in several aspects.
First, Wasabi faces the unique challenge of identifying

retry-specific rather than general error handling problems.
As discussed earlier, traditional program-dependency based
static analysis is not suitable for identifying retry function-
ality. Meanwhile, code constructs related to generic error
handling like exception blocks yield a wide instrumentation
code space where most of the code is not related to retry.

Second, by targeting retry bugs,Wasabi has different fault
injection policies regarding where and what exceptions to
inject as well as different test oracles than previous works.
For example, prior work injects domain-specific faults like
network partitions, disk faults, database read/write incon-
sistencies [3, 5, 26, 37, 39, 48, 50, 61], targets specific system
components like cluster management controllers [61] andmi-
croservices [51], or focuses on certain failure scenarios like
crash-recovery [26, 37, 47] and crash-consistency [3, 52, 55],
which are typically triggered by non-recoverable instead of
recoverable errors. Others ask users to specify or customize
injection rules [4, 11, 30, 40, 67] or test oracles [8, 9], instead
of automating these tasks likeWasabi.
This difference also applies to recent research [10, 42]:

focusing on different types of bugs fromWasabi, their design
differs fromWasabi’s in terms of where and how to inject
faults, how to judge the existence of a bug, and the types of
tests used to drive fault injection.

Rainmaker [10] targets bugs triggered by transient errors
in applications interacting with cloud services via REST APIs.
Rainmaker intercepts API calls at the HTTP layer. Its fault
injection follows a taxonomy of HTTP-specific bug patterns
and code-coverage metrics. Its oracles use existing test asser-
tions to detect issues such as inconsistent exceptions, silent
state divergence, and unhandled transient errors.
Legolas [42] focuses on partial failures in distributed

systems, also called gray failures. Like Wasabi, but unlike
Rainmaker, it injects faults at the application level by throw-
ing exceptions. However, it differs from Wasabi in almost
all other aspects of the design because the two tools target
different types of bugs. Specifically, Legolas strategically
injects faults to maximize a system’s abstract state coverage,
whereasWasabi injects faults at retry locations. It uses exist-
ing system-crash and gray-failure checkers to judge whether
a bug has occurred, unlike the retry-specific oracles used by
Wasabi. To catch gray failures, Legolas needs to use system
tests instead of unit tests, likeWasabi.
The rise of LLMs has brought opportunities to software

engineering research, with an emergent set of papers apply-
ing LLMs to code generation [46, 53, 66], testing [12, 38, 41],
repair [24, 33, 64], analysis [13, 43, 44, 54], summarization [1,
2], and documentation [60].Wasabi is orthogonal to these
works by using LLMs to pinpoint a common yet unstructured
functionality—retry logic—in large codebases.

Much work is dedicated to studying failures in cloud sys-
tems [7, 25, 27, 31, 45, 59, 62]. Some papers introduce new tax-
onomies for bugs in cloud and distributed systems [25, 27, 45],
while others focus on new or understudied classes of bugs
like metastable failures [7, 31], cancellation issues [59], or
cross-system defects [62]. Our paper sheds light on retry
bugs and provides insights on why retry functionality is
difficult to implement, test, analyze, and reason about.

6 Conclusion
Retry is a widely usedmechanism to handle transient failures
frequently encountered by software systems. This paper
introducesWasabi, a novel suite of techniques that detect
common retry problems using repurposed unit testing and
static checking, guided by a comprehensive study of retry
bugs found in popular distributed applications. This work
highlights the potential of combining complementary static,
dynamic, and LLM-based approaches to identify and improve
retry implementations.

7 Acknowledgments
We thank the reviewers for their insightful comments, and
Junfeng Yang for shepherding this work. The authors’ re-
search is supported by NSF (CNS-2313190, CCF-2119184,
CNS-1956180), the Chameleon Cloud Project [57], an Eck-
hardt Fellowship, and two University of Chicago Quad Un-
dergraduate Research grants.

13

75



References
[1] Toufique Ahmed and Premkumar Devanbu. 2023. Few-shot train-

ing LLMs for project-specific code-summarization. In Proceedings
of the 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering (, Rochester, MI, USA,) (ASE ’22). Association for
Computing Machinery, New York, NY, USA, Article 177, 5 pages.
https://doi.org/10.1145/3551349.3559555

[2] Toufique Ahmed, Kunal Suresh Pai, Premkumar Devanbu, and Earl T.
Barr. 2024. Automatic Semantic Augmentation of Language Model
Prompts (for Code Summarization). In 2024 IEEE/ACM 46th Inter-
national Conference on Software Engineering (ICSE) (ICSE’24). IEEE
Computer Society, Los Alamitos, CA, USA, 1004–1004. https://doi.
ieeecomputersociety.org/

[3] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanu-
malayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2016. Correlated crash vulnerabilities. In
Proceedings of the 12th USENIX Conference on Operating Systems De-
sign and Implementation (Savannah, GA, USA) (OSDI’16). USENIX
Association, USA, 151–167.

[4] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-
Kiswany. 2018. An analysis of network-partitioning failures in cloud
systems. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation (Carlsbad, CA, USA) (OSDI’18).
USENIX Association, USA, 51–68.

[5] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. 2015. Lineage-
driven Fault Injection. In Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data (Melbourne, Victoria,
Australia) (SIGMOD ’15). Association for Computing Machinery, New
York, NY, USA, 331–346. https://doi.org/10.1145/2723372.2723711

[6] Radu Banabic and George Candea. 2012. Fast black-box testing of
system recovery code. In Proceedings of the 7th ACM European Con-
ference on Computer Systems (Bern, Switzerland) (EuroSys’12). As-
sociation for Computing Machinery, New York, NY, USA, 281–294.
https://doi.org/10.1145/2168836.2168865

[7] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timothy
Zhu. 2021. Metastable failures in distributed systems. In Proceedings of
theWorkshop on Hot Topics in Operating Systems (Ann Arbor, Michigan)
(HotOS ’21). Association for Computing Machinery, New York, NY,
USA, 221–227. https://doi.org/10.1145/3458336.3465286

[8] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and
Jennifer Rexford. 2012. A NICE way to test openflow applications. In
Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation (San Jose, CA) (NSDI’12). USENIX Association,
USA, 10.

[9] Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin. 2021.
CoFI: consistency-guided fault injection for cloud systems. In Pro-
ceedings of the 35th IEEE/ACM International Conference on Auto-
mated Software Engineering (Virtual Event, Australia) (ASE’20). As-
sociation for Computing Machinery, New York, NY, USA, 536–547.
https://doi.org/10.1145/3324884.3416548

[10] Yinfang Chen, Xudong Sun, Suman Nath, Ze Yang, and Tianyin Xu.
2023. Push-Button Reliability Testing for Cloud-Backed Applications
with Rainmaker. In Proceedings of the 20th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2023 (Proceed-
ings of the 20th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2023). USENIX Association, USA, 1701–1716.

[11] Maria Christakis, Patrick Emmisberger, Patrice Godefroid, and Peter
Müller. 2017. A general framework for dynamic stub injection. In
Proceedings of the 39th International Conference on Software Engineering
(Buenos Aires, Argentina) (ICSE’17). IEEE Press, 586–596. https://doi.
org/10.1109/ICSE.2017.60

[12] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang,
and Lingming Zhang. 2023. Large Language Models Are Zero-Shot

Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Mod-
els. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (Seattle, WA, USA) (ISSTA’23). As-
sociation for Computing Machinery, New York, NY, USA, 423–435.
https://doi.org/10.1145/3597926.3598067

[13] Yangruibo Ding, Benjamin Steenhoek, Kexin Pei, Gail Kaiser, Wei Le,
and Baishakhi Ray. 2024. TRACED: Execution-aware Pre-training
for Source Code. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering (, Lisbon, Portugal,) (ICSE’24). As-
sociation for Computing Machinery, New York, NY, USA, Article 36,
12 pages. https://doi.org/10.1145/3597503.3608140

[14] Apache Cassandra Docs. Accessed: April 2024. https://cassandra.
apache.org/doc/stable/cassandra/configuration/cass_yaml_file.html.

[15] Apache Cassandra Docs. Accessed: April 2024. https://www.elastic.
co/guide/en/elasticsearch/hadoop/8.13/configuration.html.

[16] Apache HDFS Docs. Accessed: April 2024. https://hadoop.apache.org/
docs/stable/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml.

[17] Apache Hive Docs. Accessed: April 2024. https://cwiki.apache.org/
confluence/display/Hive/Configuration+Properties.

[18] Apache HBase Docs. Accessed: April 2024. https://hbase.apache.org/
book.html.

[19] Apache MapReduce Docs. Accessed: April 2024. https:
//hadoop.apache.org/docs/r3.1.0/hadoop-project-dist/hadoop-
common/core-default.xml.

[20] ApacheMapReduceDocs. Accessed: April 2024. https://hadoop.apache.
org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-
client-core/mapred-default.xml.

[21] Apache Yarn Docs. Accessed: April 2024. https://hadoop.
apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/yarn-
service/Configurations.html.

[22] CodeQL Documentation. Accessed: April 2024. https://codeql.github.
com/docs/.

[23] Polly documentation. Accessed: April 2024. https://www.pollydocs.
org.

[24] Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. 2023. Baldur:
Whole-Proof Generation and Repair with Large Language Models.
In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(, San Francisco, CA, USA,) (ESEC/FSE’23). Association for Computing
Machinery, New York, NY, USA, 1229–1241. https://doi.org/10.1145/
3611643.3616243

[25] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and Suman Nath. 2022.
How to fight production incidents? an empirical study on a large-scale
cloud service. In Proceedings of the 13th Symposium on Cloud Computing
(San Francisco, California) (SoCC ’22). Association for Computing
Machinery, New York, NY, USA, 126–141. https://doi.org/10.1145/
3542929.3563482

[26] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M.
Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Koushik Sen, and Dhruba Borthakur. 2011. FATE and DESTINI: a
framework for cloud recovery testing. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation (Boston,
MA) (NSDI’11). USENIX Association, USA, 238–252.

[27] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eli-
azar, Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and
Anang D. Satria. 2014. What Bugs Live in the Cloud? A Study of
3000+ Issues in Cloud Systems. In Proceedings of the ACM Sympo-
sium on Cloud Computing (Seattle, WA, USA) (SOCC ’14). Associa-
tion for Computing Machinery, New York, NY, USA, 1–14. https:
//doi.org/10.1145/2670979.2670986

[28] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono,
Anang D. Satria, Jeffry Adityatama, and Kurnia J. Eliazar. 2016. Why
Does the Cloud Stop Computing? Lessons from Hundreds of Service

14

76

https://doi.org/10.1145/3551349.3559555
https://doi.ieeecomputersociety.org/
https://doi.ieeecomputersociety.org/
https://doi.org/10.1145/2723372.2723711
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1145/3458336.3465286
https://doi.org/10.1145/3324884.3416548
https://doi.org/10.1109/ICSE.2017.60
https://doi.org/10.1109/ICSE.2017.60
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597503.3608140
https://cassandra.apache.org/doc/stable/cassandra/configuration/cass_yaml_file.html
https://cassandra.apache.org/doc/stable/cassandra/configuration/cass_yaml_file.html
https://www.elastic.co/guide/en/elasticsearch/hadoop/8.13/configuration.html 
https://www.elastic.co/guide/en/elasticsearch/hadoop/8.13/configuration.html 
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://hbase.apache.org/book.html
https://hbase.apache.org/book.html
https://hadoop.apache.org/docs/r3.1.0/hadoop-project-dist/hadoop-common/core-default.xml
https://hadoop.apache.org/docs/r3.1.0/hadoop-project-dist/hadoop-common/core-default.xml
https://hadoop.apache.org/docs/r3.1.0/hadoop-project-dist/hadoop-common/core-default.xml
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/yarn-service/Configurations.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/yarn-service/Configurations.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/yarn-service/Configurations.html
https://codeql.github.com/docs/
https://codeql.github.com/docs/
https://www.pollydocs.org
https://www.pollydocs.org
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1145/3542929.3563482
https://doi.org/10.1145/3542929.3563482
https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1145/2670979.2670986


Outages. In Proceedings of the Seventh ACM Symposium on Cloud Com-
puting (Santa Clara, CA, USA) (SoCC’16). Association for Computing
Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/2987550.
2987583

[29] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dussea, and Ben Liblit. 2008. EIO: error handling is
occasionally correct (FAST’08). USENIX Association, USA, Article 14,
16 pages.

[30] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K.
Reiter, and Vyas Sekar. 2016. Gremlin: Systematic Resilience Testing of
Microservices. In 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS). 57–66. https://doi.org/10.1109/ICDCS.
2016.11

[31] Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikr-
ishna, Salman Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy Zhu,
and Aleksey Charapko. 2022. Metastable Failures in the Wild. In 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22) (OSDI’22). USENIX Association, Carlsbad, CA, 73–90. https:
//www.usenix.org/conference/osdi22/presentation/huang-lexiang

[32] Netflix Hystrix. Accessed: April 2024. https://github.com/Netflix/
Hystrix.

[33] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan,
Suresh Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jig-
saw: large language models meet program synthesis. In Proceedings of
the 44th International Conference on Software Engineering (Pittsburgh,
Pennsylvania) (ICSE’22). Association for Computing Machinery, New
York, NY, USA, 1219–1231. https://doi.org/10.1145/3510003.3510203

[34] Suman Jana, Yuan Kang, Samuel Roth, and Baishakhi Ray. 2016. Au-
tomatically detecting error handling bugs using error specifications.
In Proceedings of the 25th USENIX Conference on Security Symposium
(Austin, TX, USA) (SEC’16). USENIX Association, USA, 345–362.

[35] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu.
2023. LLMLingua: Compressing Prompts for Accelerated Inference of
Large Language Models. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing, Houda Bouamor, Juan
Pino, and Kalika Bali (Eds.). Association for Computational Linguis-
tics, Singapore, 13358–13376. https://doi.org/10.18653/v1/2023.emnlp-
main.825

[36] Huiqiang Jiang, QianhuiWu, Xufang Luo, Dongsheng Li, Chin-Yew Lin,
Yuqing Yang, and Lili Qiu. 2024. LongLLMLingua: Accelerating and En-
hancing LLMs in Long Context Scenarios via Prompt Compression. In
Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (Eds.). Association for Computational Linguistics,
Bangkok, Thailand, 1658–1677. https://aclanthology.org/2024.acl-
long.91

[37] Xiaoen Ju, Livio Soares, Kang G. Shin, Kyung Dong Ryu, and Dilma
Da Silva. 2013. On fault resilience of OpenStack. In Proceedings of the
4th Annual Symposium on Cloud Computing (Santa Clara, California)
(SOCC’13). Association for Computing Machinery, New York, NY, USA,
Article 2, 16 pages. https://doi.org/10.1145/2523616.2523622

[38] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large Language
Models are Few-shot Testers: Exploring LLM-based General Bug Re-
production. In 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE) (ICSE’23). 2312–2323. https://doi.org/10.1109/
ICSE48619.2023.00194

[39] Kyle Kingsbury and Peter Alvaro. 2020. Elle: inferring isolation anom-
alies from experimental observations. Proc. VLDB Endow. 14, 3 (nov
2020), 268–280. https://doi.org/10.14778/3430915.3430918

[40] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F.
Lukman, and Haryadi S. Gunawi. 2014. SAMC: semantic-aware model
checking for fast discovery of deep bugs in cloud systems. In Proceed-
ings of the 11th USENIX Conference on Operating Systems Design and
Implementation (Broomfield, CO) (OSDI’14). USENIX Association, USA,

399–414.
[41] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Sid-

dhartha Sen. 2023. CodaMosa: Escaping Coverage Plateaus in Test Gen-
eration with Pre-trained Large Language Models. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE) (ICSE’23).
919–931. https://doi.org/10.1109/ICSE48619.2023.00085

[42] Ao Li, Shan Lu, Suman Nath, Rohan Padhye, and Vyas Sekar. 2024.
ExChain: Exception Dependency Analysis for Root Cause Diagnosis.
In Proceedings of the 21th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2024 (Proceedings of the 21st USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2024). USENIX Association, USA.

[43] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2023. Assisting
Static Analysis with Large Language Models: A ChatGPT Experiment.
In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (,
San Francisco, CA, USA,) (ESEC/FSE 2023). Association for Computing
Machinery, New York, NY, USA, 2107–2111. https://doi.org/10.1145/
3611643.3613078

[44] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhancing
Static Analysis for Practical Bug Detection: An LLM-Integrated Ap-
proach. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications (Pasadena,
California, USA) (OOPSLA’24). Association for Computing Machinery,
New York, NY, USA.

[45] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. 2019.
What bugs cause production cloud incidents?. In Proceedings of the
Workshop on Hot Topics in Operating Systems (Bertinoro, Italy) (Ho-
tOS’19). Association for Computing Machinery, New York, NY, USA,
155–162. https://doi.org/10.1145/3317550.3321438

[46] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming
Zhang. 2023. Is Your Code Generated by ChatGPT Really Cor-
rect? Rigorous Evaluation of Large Language Models for Code
Generation. In Advances in Neural Information Processing Systems
(NeurIPS’23, Vol. 36), A. Oh, T. Neumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (Eds.). Curran Associates, Inc., 21558–
21572. https://proceedings.neurips.cc/paper_files/paper/2023/file/
43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf

[47] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan, Jun Yang, and Liang
You. 2019. CrashTuner: detecting crash-recovery bugs in cloud systems
via meta-info analysis. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP’19).
Association for Computing Machinery, New York, NY, USA, 114–130.
https://doi.org/10.1145/3341301.3359645

[48] Rupak Majumdar and Filip Niksic. 2017. Why is random testing effec-
tive for partition tolerance bugs? Proc. ACM Program. Lang. 2, POPL,
Article 46, 24 pages. https://doi.org/10.1145/3158134

[49] Paul D. Marinescu, Radu Banabic, and George Candea. 2010. An
extensible technique for high-precision testing of recovery code. In
Proceedings of the 2010 USENIX Conference on USENIX Annual Technical
Conference (Boston, MA) (USENIXATC’10). USENIX Association, USA,
23.

[50] Paul D. Marinescu and George Candea. 2009. LFI: A practical and
general library-level fault injector. In 2009 IEEE/IFIP International
Conference on Dependable Systems and Networks. 379–388. https:
//doi.org/10.1109/DSN.2009.5270313

[51] Christopher S. Meiklejohn, Andrea Estrada, Yiwen Song, Heather
Miller, and Rohan Padhye. 2021. Service-Level Fault Injection Testing.
In Proceedings of the ACM Symposium on Cloud Computing (Seattle,
WA, USA) (SoCC’21). Association for ComputingMachinery, New York,
NY, USA, 388–402. https://doi.org/10.1145/3472883.3487005

[52] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. 2018. Finding crash-consistency bugs with
bounded black-box crash testing. In Proceedings of the 13th USENIX

15

77

https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1109/ICDCS.2016.11
https://www.usenix.org/conference/osdi22/presentation/huang-lexiang
https://www.usenix.org/conference/osdi22/presentation/huang-lexiang
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://aclanthology.org/2024.acl-long.91
https://aclanthology.org/2024.acl-long.91
https://doi.org/10.1145/2523616.2523622
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.14778/3430915.3430918
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1145/3611643.3613078
https://doi.org/10.1145/3611643.3613078
https://doi.org/10.1145/3317550.3321438
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://doi.org/10.1145/3341301.3359645
https://doi.org/10.1145/3158134
https://doi.org/10.1109/DSN.2009.5270313
https://doi.org/10.1109/DSN.2009.5270313
https://doi.org/10.1145/3472883.3487005


Conference on Operating Systems Design and Implementation (Carlsbad,
CA, USA) (OSDI’18). USENIX Association, USA, 33–50.

[53] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar,
Lambert PouguemWassi, Michele Merler, Boris Sobolev, Raju Pavuluri,
Saurabh Sinha, and Reyhaneh Jabbarvand. 2024. Lost in Translation: A
Study of Bugs Introduced by Large LanguageModels while Translating
Code. In 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE) (ICSE’24). IEEE Computer Society, Los Alamitos,
CA, USA, 866–866. https://doi.ieeecomputersociety.org/

[54] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng
Yin. 2023. Can large language models reason about program invari-
ants?. In Proceedings of the 40th International Conference on Machine
Learning (, Honolulu, Hawaii, USA,) (ICML’23). JMLR.org, Article 1144,
25 pages.

[55] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2014. All file systems are not created
equal: on the complexity of crafting crash-consistent applications. In
Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation (Broomfield, CO) (OSDI’14). USENIX Association,
USA, 433–448.

[56] AspectJ Maven Plugin. Accessed: April 2024. https://www.mojohaus.
org/aspectj-maven-plugin/.

[57] The Chameleon Cloud Project. Accessed: September 2024. https://
chameleoncloud.org/.

[58] Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-
Dusseau, and Andrea C. Arpaci-Dusseau. 2009. Error propagation
analysis for file systems. In Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (Dublin,
Ireland) (PLDI’09). Association for Computing Machinery, New York,
NY, USA, 270–280. https://doi.org/10.1145/1542476.1542506

[59] Utsav Sethi, Haochen Pan, Shan Lu, Madanlal Musuvathi, and Suman
Nath. 2022. Cancellation in Systems: An Empirical Study of Task
Cancellation Patterns and Failures. In Proceedings of the 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’22).
USENIX Association, Carlsbad, CA, 127–141. https://www.usenix.org/
conference/osdi22/presentation/sethi

[60] Yiming Su, ChengchengWan, Utsav Sethi, Shan Lu, Madan Musuvathi,
and Suman Nath. 2023. HotGPT: How to Make Software Documen-
tation More Useful with a Large Language Model?. In Proceedings of
the 19th Workshop on Hot Topics in Operating Systems (Providence, RI,
USA) (HOTOS’23). Association for Computing Machinery, New York,
NY, USA, 87–93. https://doi.org/10.1145/3593856.3595910

[61] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan,
Ramnatthan Alagappan, Michael Gasch, Lalith Suresh, and Tianyin
Xu. 2022. Automatic Reliability Testing For Cluster Management
Controllers. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIXAssociation, Carlsbad, CA, 143–
159. https://www.usenix.org/conference/osdi22/presentation/sun

[62] Lilia Tang, Chaitanya Bhandari, Yongle Zhang, Anna Karanika,
Shuyang Ji, Indranil Gupta, and Tianyin Xu. 2023. Fail through the
Cracks: Cross-System Interaction Failures in Modern Cloud Systems.
In Proceedings of the Eighteenth European Conference on Computer Sys-
tems (Rome, Italy) (EuroSys’23). Association for Computing Machinery,
New York, NY, USA, 433–451. https://doi.org/10.1145/3552326.3587448

[63] The Wasabi Toolkit. Release: September 2024. https://github.com/
bastoica/wasabi.

[64] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Au-
tomated Program Repair in the Era of Large Pre-trained Language
Models. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE) (ICSE’23). 1482–1494. https://doi.org/10.1109/
ICSE48619.2023.00129

[65] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu
Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple

testing can prevent most critical failures: an analysis of production
failures in distributed data-intensive systems. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation
(Broomfield, CO) (OSDI’14). USENIX Association, USA, 249–265.

[66] Jiyang Zhang, PengyuNie, Junyi Jessy Li, andMilos Gligoric. 2023. Mul-
tilingual Code Co-evolution using Large Language Models. In Proceed-
ings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (, San Fran-
cisco, CA, USA,) (ESEC/FSE’23). Association for Computing Machinery,
New York, NY, USA, 695–707. https://doi.org/10.1145/3611643.3616350

[67] Pingyu Zhang and Sebastian Elbaum. 2012. Amplifying tests to validate
exception handling code. In 2012 34th International Conference on
Software Engineering (ICSE) (ICSE’12). 595–605. https://doi.org/10.
1109/ICSE.2012.6227157

16

78

https://doi.ieeecomputersociety.org/
https://www.mojohaus.org/aspectj-maven-plugin/
https://www.mojohaus.org/aspectj-maven-plugin/
https://chameleoncloud.org/
https://chameleoncloud.org/
https://doi.org/10.1145/1542476.1542506
https://www.usenix.org/conference/osdi22/presentation/sethi
https://www.usenix.org/conference/osdi22/presentation/sethi
https://doi.org/10.1145/3593856.3595910
https://www.usenix.org/conference/osdi22/presentation/sun
https://doi.org/10.1145/3552326.3587448
https://github.com/bastoica/wasabi
https://github.com/bastoica/wasabi
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1145/3611643.3616350
https://doi.org/10.1109/ICSE.2012.6227157
https://doi.org/10.1109/ICSE.2012.6227157

	Abstract
	1 Introduction
	2 Understanding Retry Issues
	2.1 Methodology
	2.2 IF retry should be performed
	2.3 WHEN retry should execute
	2.4 HOW to execute retry
	2.5 Other study findings

	3 Wasabi
	3.1 Exposing retry bugs through unit tests
	3.2 Detecting retry bugs through static analysis

	4 Evaluation
	4.1 Results on Bug Detection
	4.2 Retry Code Identification and Coverage
	4.3 Cost and False Positives
	4.4 Other results
	4.5 Discussion

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

